Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(6): 1278-1287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778243

ABSTRACT

Gene expression is an essential step in the translation of genotypes into phenotypes. However, little is known about the transcriptome architecture and the underlying genetic effects at the species level. Here we generated and analyzed the pan-transcriptome of ~1,000 yeast natural isolates across 4,977 core and 1,468 accessory genes. We found that the accessory genome is an underappreciated driver of transcriptome divergence. Global gene expression patterns combined with population structure showed that variation in heritable expression mainly lies within subpopulation-specific signatures, for which accessory genes are overrepresented. Genome-wide association analyses consistently highlighted that accessory genes are associated with proportionally more variants with larger effect sizes, illustrating the critical role of the accessory genome on the transcriptional landscape within and between populations.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Genome-Wide Association Study , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Genetic Variation , Gene Expression Profiling/methods , Genotype , Polymorphism, Single Nucleotide
2.
Proc Natl Acad Sci U S A ; 121(19): e2319211121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696467

ABSTRACT

Gene expression varies between individuals and corresponds to a key step linking genotypes to phenotypes. However, our knowledge regarding the species-wide genetic control of protein abundance, including its dependency on transcript levels, is very limited. Here, we have determined quantitative proteomes of a large population of 942 diverse natural Saccharomyces cerevisiae yeast isolates. We found that mRNA and protein abundances are weakly correlated at the population gene level. While the protein coexpression network recapitulates major biological functions, differential expression patterns reveal proteomic signatures related to specific populations. Comprehensive genetic association analyses highlight that genetic variants associated with variation in protein (pQTL) and transcript (eQTL) levels poorly overlap (3%). Our results demonstrate that transcriptome and proteome are governed by distinct genetic bases, likely explained by protein turnover. It also highlights the importance of integrating these different levels of gene expression to better understand the genotype-phenotype relationship.


Subject(s)
Gene Expression Regulation, Fungal , Proteome , Quantitative Trait Loci , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proteome/genetics , Proteome/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genetic Variation , Proteomics/methods , Genotype , Phenotype , Gene Expression Profiling/methods
3.
Nucleic Acids Res ; 52(5): 2434-2445, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38261993

ABSTRACT

Gene expression is known to vary among individuals, and this variability can impact the phenotypic diversity observed in natural populations. While the transcriptome and proteome have been extensively studied, little is known about the translation process itself. Here, we therefore performed ribosome and transcriptomic profiling on a genetically and ecologically diverse set of natural isolates of the Saccharomyces cerevisiae yeast. Interestingly, we found that the Euclidean distances between each profile and the expression fold changes in each pairwise isolate comparison were higher at the transcriptomic level. This observation clearly indicates that the transcriptional variation observed in the different isolates is buffered through a phenomenon known as post-transcriptional buffering at the translation level. Furthermore, this phenomenon seemed to have a specific signature by preferentially affecting essential genes as well as genes involved in complex-forming proteins, and low transcribed genes. We also explored the translation of the S. cerevisiae pangenome and found that the accessory genes related to introgression events displayed similar transcription and translation levels as the core genome. By contrast, genes acquired through horizontal gene transfer events tended to be less efficiently translated. Together, our results highlight both the extent and signature of the post-transcriptional buffering.


Subject(s)
Saccharomyces cerevisiae , Transcriptome , Humans , Saccharomyces cerevisiae/genetics , Gene Expression Profiling , Ribosomes/genetics , Genetic Background , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...