Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mycoses ; 63(8): 869-875, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32406142

ABSTRACT

BACKGROUND: Matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI) is a mass spectrometry-based technique, which can be applied for compound-specific imaging of pharmaceuticals in tissues samples. MALDI-MSI technology is widely used to visualise penetration and distribution profile through different tissues but has never been used with nail tissue. OBJECTIVES: This study used MALDI-MSI technology to visualise distribution profile and penetration into ex vivo human mycosis-infected toenails of three antifungal active ingredients amorolfine, ciclopirox and naftifine contained in topical onychomycosis nail treatment preparations, marketed as Loceryl® , Ciclopoli® and Exoderil® . METHODS: Three mycosis-infected toenails were used for each treatment condition. Six and twenty-four hours after one single topical application of antifungal drugs, excess of formulation was removed, nails were cryo-sectioned at a thickness of 20 µm, and MALDI matrix was deposited on each nail slice. Penetration and distribution profile of amorolfine, ciclopirox and naftifine in the nails were analysed by MALDI-MSI. RESULTS: All antifungal actives have been visualised in the nail by MALDI-MSI. Ciclopirox and naftifine molecules showed a highly localised distribution in the uppermost layer of the nail plate. In comparison, amorolfine diffuses through the nail plate to the deep layers already 6 hours after application and keeps diffusing towards the lowest nail layers within 24 hours. CONCLUSIONS: This study shows for the first-time distribution and penetration of certain antifungal actives into human nails using MALDI-MSI analysis. The results showed a more homogeneous distribution of amorolfine to nail and a better penetration through the infected nails than ciclopirox and naftifine.


Subject(s)
Antifungal Agents/pharmacology , Onychomycosis/diagnostic imaging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Administration, Topical , Allylamine/administration & dosage , Allylamine/analogs & derivatives , Allylamine/pharmacology , Allylamine/therapeutic use , Antifungal Agents/administration & dosage , Antifungal Agents/therapeutic use , Ciclopirox/administration & dosage , Ciclopirox/pharmacology , Ciclopirox/therapeutic use , Humans , Lacquer , Morpholines/administration & dosage , Morpholines/pharmacology , Morpholines/therapeutic use , Nails/microbiology , Nails/pathology , Onychomycosis/drug therapy
2.
Hepatology ; 39(3): 655-66, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14999684

ABSTRACT

The hepatotoxicity of several drugs is increased by mild viral infections. During such infections, death receptor ligands are expressed at low levels, and most parenchymal cells survive. We tested the hypothesis that subliminal death receptor stimulation may aggravate the hepatotoxicity of drugs, which are transformed by cytochrome P-450 cytochrome P-450 into glutathione-depleting reactive metabolites. Twenty-four-hour-fasted mice were pretreated with a subtoxic dose of the agonistic Jo2 anti-Fas antibody (1 microg per mouse) 3 hours before acetaminophen (500 mg/kg) or 1 hour before bromobenzene (400 mg/kg) administration. Administration of Jo2 alone increased hepatic inducible nitric oxide synthase nitric oxide synthase but did not modify serum alanine aminotransferase (ALT), hepatic adenosine triphosphate (ATP), glutathione (GSH), cytochrome P-450, cytosolic cytochrome c, caspase-3 activity or hepatic morphology. However, pretreating mice with Jo2 further decreased both hepatic GSH and ATP by 40% 4 hours after acetaminophen administration, and further increased serum ALT and the area of centrilobular necrosis at 24 hours. In mice pretreated with the Jo2 antibody before bromobenzene administration, hepatic GSH 4 hours after bromobenzene administration was 51% lower than in mice treated with bromobenzene alone, and serum ALT activity at 24 hours was 47-fold higher. In conclusion, administration of a subtoxic dose of an agonistic anti-Fas antibody before acetaminophen or bromobenzene increases metabolite-mediated GSH depletion and hepatotoxicity. Subliminal death receptor stimulation may be one mechanism whereby mild viral infections can increase drug-induced toxicity.


Subject(s)
Acetaminophen/poisoning , Analgesics, Non-Narcotic/poisoning , Bromobenzenes/poisoning , Liver/drug effects , fas Receptor/metabolism , Adenosine Triphosphate/metabolism , Animals , Caspase 3 , Caspases/metabolism , Dose-Response Relationship, Drug , Drug Synergism , Glutamate-Cysteine Ligase/metabolism , Glutathione/antagonists & inhibitors , Liver/metabolism , Liver Diseases/etiology , Liver Diseases/mortality , Male , Mice , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II
3.
Chem Biol Interact ; 142(1-2): 43-55, 2002 Nov 10.
Article in English | MEDLINE | ID: mdl-12399154

ABSTRACT

The quantification and identification of xenobiotic reactive intermediates is difficult in the absence of highly radiolabeled drug. We have developed a method for identifying these intermediates by measuring the formation of adducts to intracellularly generated radiolabeled glutathione (GSH). Freshly isolated adherent rat and human hepatocytes were incubated overnight in methionine and cystine-free ('thio-free') medium. They were then exposed to 100 microM methionine and 10 microCi 35S-labeled methionine in otherwise thio-free medium to replete cellular GSH pools with intracellularly generated 35S-labeled GSH. After 3 h, acetaminophen was added as a test compound and the cells were incubated for an additional 24 h. Intracellular GSH and its specific activity were quantified after reaction with monobromobimane followed by HPLC analysis with fluorescence and radiochemical detection. Radiolabeled GSH was detectable at 3 h and maintained high specific activity and physiological concentrations for up to 24 h. Incubation medium from acetaminophen treated and nontreated hepatocytes were analyzed for radiolabeled peaks by HPLC using radiochemical detection. Radiolabeled peaks not present in nontreated hepatocytes were identified as acetaminophen GSH adducts by LC-MS. Formation of acetaminophen 35S-GSH adducts by rat hepatocytes containing endogenously synthesized 35S-GSH was increased with acetaminophen concentrations ranging from 500 to 2 mM.


Subject(s)
Acetaminophen/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Glutathione/metabolism , Liver/metabolism , Methionine/metabolism , Acetaminophen/pharmacokinetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Carbon Radioisotopes , Chromatography, Liquid , Cystine/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Mass Spectrometry , Rats , Sulfur Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...