Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015290

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) depends on a variety of parameters notably related to the photosensitizers used, the pathogens to target and the environment to operate. In a previous study using a series of Ruthenium(II) polypyridyl ([Ru(II)]) complexes, we reported the importance of the chemical structure on both their photo-physical/physico-chemical properties and their efficacy for aPDT. By employing standard in vitro conditions, effective [Ru(II)]-mediated aPDT was demonstrated against planktonic cultures of Pseudomonas aeruginosa and Staphylococcus aureus strains notably isolated from the airways of Cystic Fibrosis (CF) patients. CF lung disease is characterized with many pathophysiological disorders that can compromise the effectiveness of antimicrobials. Taking this into account, the present study is an extension of our previous work, with the aim of further investigating [Ru(II)]-mediated aPDT under in vitro experimental settings approaching the conditions of infected airways in CF patients. Thus, we herein studied the isolated influence of a series of parameters (including increased osmotic strength, acidic pH, lower oxygen availability, artificial sputum medium and biofilm formation) on the properties of two selected [Ru(II)] complexes. Furthermore, these compounds were used to evaluate the possibility to photoinactivate P. aeruginosa while preserving an underlying epithelium of human bronchial epithelial cells. Altogether, our results provide substantial evidence for the relevance of [Ru(II)]-based aPDT in CF lung airways. Besides optimized nano-complexes, this study also highlights the various needs for translating such a challenging perspective into clinical practice.

2.
Pharmaceutics ; 13(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34959277

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.

3.
Inorg Chem ; 60(21): 16059-16064, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34662098

ABSTRACT

We report a bioinspired heterobimetallic photocatalyst RuIIchrom-FeIIIcat and its relevant applications toward visible-light-driven C-H bond oxidation of a series of hydrocarbons using O2 as the O-atom source. The RuII center absorbs visible light near 460 nm and triggers a cascade of electrons to FeIII to afford a catalytically active high-valent FeIV═O species. The in situ formed FeIV═O has been employed for several high-impact oxidation reactions in the presence of triethanolamine (TEOA) as the sacrificial electron donor.


Subject(s)
Oxygen
4.
ChemMedChem ; 13(20): 2229-2239, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30157309

ABSTRACT

As a growing public health concern, the worldwide spread of antimicrobial resistance urges the development of new therapies. Antibacterial photodynamic therapy (a-PDT) may be an alternative to conventional antibiotic therapy. Herein we report the synthesis and characterization of seven original reactive oxygen species (ROS)-producing ruthenium(II) polypyridyl complexes. These are part of a collection of 17 derivatives varying in terms of the nature of the substituent(s), molecular symmetry, electrical charge, and counterions. They were characterized by considering 1) their physical properties (absorption coefficient at irradiation wavelength, 1 O2 generation quantum yield, luminescence) and 2) their antibacterial activity in a series of photodynamic assays using Gram-positive and Gram-negative bacteria of clinical relevance. The results unveiled some structure-activity relationships: one derivative that combines multiple beneficial features for a-PDT was effective against all the bacteria considered, regardless of their Gram status, species, or antibiotic resistance profile. This systematic study could guide the design of next-generation ruthenium-based complexes for enhanced antibacterial photodynamic strategies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Phenanthrolines/pharmacology , Photosensitizing Agents/pharmacology , Ruthenium/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/radiation effects , Anti-Bacterial Agents/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Coordination Complexes/toxicity , Escherichia coli/drug effects , Ligands , Light , Luminescence , Luminescent Measurements , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Structure , Phenanthrolines/chemical synthesis , Phenanthrolines/radiation effects , Phenanthrolines/toxicity , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Photosensitizing Agents/toxicity , Pseudomonas aeruginosa/drug effects , Singlet Oxygen/metabolism , Structure-Activity Relationship
5.
Chem Commun (Camb) ; 53(59): 8356-8359, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28696451

ABSTRACT

We report a triazole-based trinuclear complex as the first example that displays a complete one-step first-order [HS-HS-HS] ↔ [LS-LS-LS] spin transition at 318 K. The strong ferro-elastic interactions, between the three metal centers, have been identified as the source of the concerted spin transition in this trinuclear complex.

6.
Inorg Chem ; 53(1): 97-104, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24358979

ABSTRACT

New Fe(II) coordination polymeric neutral chains of formula [Fe(aqin)2(µ2-M(CN)4)] (M = Ni(II) (1) and Pt(II) (2)) (aqin = Quinolin-8-amine) have been synthesized and characterized by infrared spectroscopy, X-ray diffraction, and magnetic measurements. The crystal structure determinations of 1-2 reveal in both cases a one-dimensional structure in which the planar [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion acts as a µ2-bridging ligand, and the two aqin molecules as chelating coligands. Examination of the intermolecular contacts in the two compounds reveals that the main contacts are ascribed to hydrogen bonding interactions involving the amine groups of the aqin chelating ligands and the nitrogen atoms of the two non bridging CN groups of the [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion. The average values of the six Fe-N distances observed respectively at room temperature (293 K) and low temperature (120 K), that is, 2.142(3) and 2.035(2) Å for 1, and 2.178(3) and 1.990(2) Å for 2, and the thermal variation of the cell parameters (performed on 2) are indicative of the presence of an abrupt HS-LS spin crossover (SCO) transition in both compounds. The thermal dependence of the product of the molar magnetic susceptibility times the temperature (χmT), in cooling and warming modes, confirms the SCO behavior at about 145 and 133 K in 1 and 2, respectively, and reveals the presence of a small thermal hysteresis of about 2 K for each compound.

7.
Inorg Chem ; 44(11): 4086-93, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15907138

ABSTRACT

Reactions between CuCl2 and K2tcpd (tcpd2- = [C10N6]2- = (C[C(CN)2]3)2-) in the presence of neutral co-ligands (bpym = 2,2'-bipyrimidine, and tn = 1,3-diaminopropane) in aqueous solution yield the new compounds [Cu2(bpym)(tcpd)2(H2O)4] x 2H2O (1), [Cu(tn)(tcpd)] (2), and [Cu(tn)2(tcpd)] x H2O (3), which are characterized by X-ray crystallography and magnetic measurements. Compound 1 displays a one-dimensional structure in which the bpym ligand, acting with a bis-chelating coordination mode, leads to [Cu2(bpym)]4+ dinuclear units which are connected by two mu2-tcpd2- bridging ligands. Compound 2 consists of a three-dimensional structure generated by [Cu(tn)]2+ units connected by a mu4-tcpd2- ligand. The structure of 3 is made up of centrosymmetric planar [Cu(tn)]2+ units connected by a mu2-tcpd2- ligand leading to infinite zigzag chains. In compounds 1 and 3, the bridging coordination mode of the tcpd2- unit involves only two nitrogen atoms of one C(CN)2 wing, while in 2, this ligand acts via four nitrogen atoms of two C(CN)2 wings. Despite this difference, the structural features of the tcpd2- units in 1-3 are essentially similar. Magnetic measurements for compound 1 exhibit a maximum in the chi(m) vs T plot (at approximately 150 K) which is characteristic of strong antiferromagnetic exchange interactions between the Cu(II) metal ions dominated by the magnetic exchange through the bis-chelating bpym. The fit of the magnetic data to a dimer model gives J and g values of -90.0 cm(-1) and 2.12, respectively. For compounds 2 and 3 the thermal variations of the magnetic susceptibility show weak antiferromagnetic interactions between the Cu(II) metal ions that can be well reproduced with an antiferromagnetic regular S = 1/2 chain model that gives J values of -0.07(2) and -0.18(1) cm(-1) with g values of 2.12(1) and 2.13(1) for compounds 2 and 3, respectively (the Hamiltonian is written in all the cases as H = -2JS(a)S(b)).

8.
Chem Commun (Camb) ; (10): 1078-9, 2002 May 21.
Article in English | MEDLINE | ID: mdl-12122673

ABSTRACT

Reaction of the two-coordinate 'assembling complex-ligand' [Cu(tn)]2+ with the building block [Cr(CN)6]3- leads to a unique two-dimensional Cu-Cr cyano-bridged ferromagnet with unusual mu 3- and mu 4-bridging [Cu(tn)]2+ units.

SELECTION OF CITATIONS
SEARCH DETAIL
...