Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1337973, 2024.
Article in English | MEDLINE | ID: mdl-38665920

ABSTRACT

Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complex offers a promising strategy for immunotherapy due to their specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer using pH(low) insertion peptides (pHLIP). We demonstrated the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and activation of T cells. This work highlights the potential of pHLIP as a vehicle for the targeted delivery of antigenic peptides and its presentation via MHC-bound complexes on cancer cell surface for activation of T cells with implications for enhancing anti-cancer immunotherapy.


Subject(s)
Antigen Presentation , Membrane Proteins , Oligopeptides , Humans , Antigen Presentation/immunology , Animals , Antigens, Neoplasm/immunology , Cell Line, Tumor , Immunotherapy/methods , Acidosis/immunology , Lymphocyte Activation/immunology , Tumor Microenvironment/immunology , Mice , T-Lymphocytes, Cytotoxic/immunology , Peptides/immunology , Hydrogen-Ion Concentration , Melanoma/immunology , Melanoma/therapy
2.
Methods Mol Biol ; 2743: 195-209, 2024.
Article in English | MEDLINE | ID: mdl-38147217

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) are one of the key regulators of receptor tyrosine kinases (RTKs) and therefore play a critical role in modulating signal transduction. While the structure-function relationship of RTKs has been widely studied, the mechanisms modulating the activity of RPTPs still need to be fully understood. On the other hand, homodimerization has been shown to antagonize RPTP catalytic activity and appears to be a general feature of the entire family. Conversely, their documented ability to physically interact with RTKs is integral to their negative regulation of RTKs, but there is a yet-to-be proposed common model. However, specific transmembrane (TM) domain interactions and residues have been shown to be essential in regulating RPTP homodimerization, interactions with RTK substrates, and activity. Therefore, elucidating the contribution of the TM domains in RPTP regulation can provide significant insights into how these receptors function, interact, and eventually be modulated. This chapter describes the dominant-negative AraC-based transcriptional reporter (DN-AraTM) assay to identify specific TM interactions essential to homodimerization and heteroassociation with other membrane receptors, such as RTKs.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Biological Assay , Protein Domains , Receptor Protein-Tyrosine Kinases
3.
Methods Mol Biol ; 2743: 153-163, 2024.
Article in English | MEDLINE | ID: mdl-38147214

ABSTRACT

Tyrosine phosphorylation regulates signaling network activity downstream of receptor tyrosine kinase (RTK) activation. Receptor protein tyrosine phosphatases (RPTPs) serve to dephosphorylate RTKs and their proximal adaptor proteins, thus serving to modulate RTK activity. While the general function of RPTPs is well understood, the direct and indirect substrates for each RPTP are poorly characterized. Here we describe a method, quantitative phosphotyrosine phosphoproteomics, that enables the identification of specific phosphorylation sites whose phosphorylation levels are altered by the expression and activity of a given RPTP. In a proof-of-concept application, we use this method to highlight several direct or indirect substrate phosphorylation sites for PTPRJ, also known as DEP1, and show their quantitative phosphorylation in the context of wild-type PTPRJ compared to a mutant form of PTPRJ with increased activity, in EGF-stimulated cells. This method is generally applicable to define the signaling network effects of each RPTP in cells or tissues under different physiological conditions.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/genetics , Adaptor Proteins, Signal Transducing , Phosphorylation , Protein Processing, Post-Translational
4.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904977

ABSTRACT

Cytotoxic T lymphocytes are the primary effector immune cells responsible for protection against cancer, as they target peptide neoantigens presented through the major histocompatibility complex (MHC) on cancer cells, leading to cell death. Targeting peptide-MHC (pMHC) complexes offers a promising strategy for immunotherapy due to its specificity and effectiveness against cancer. In this work, we exploit the acidic tumor micro-environment to selectively deliver antigenic peptides to cancer cells using pH(low) insertion peptides (pHLIP). We demonstrated that the delivery of MHC binding peptides directly to the cytoplasm of melanoma cells resulted in the presentation of antigenic peptides on MHC, and subsequent activation of T cells. This work highlights the potential of pHLIP as a vehicle for targeted delivery of antigenic peptides and their presentation via MHC-bound complexes on cancer cell surfaces for activation of T cells with implications for enhancing anti-cancer immunotherapy.

5.
Protein Sci ; 32(9): e4742, 2023 09.
Article in English | MEDLINE | ID: mdl-37515426

ABSTRACT

Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal-initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK-driven cell phenotypes. Here, we designed and tested a series of first-in-class pH-responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR-driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor-selective and TM-targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK-driven cancers.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatases , Humans , Phosphorylation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Tyrosine/genetics , Phenotype , Hydrogen-Ion Concentration , Tumor Microenvironment
6.
Front Oncol ; 12: 1017947, 2022.
Article in English | MEDLINE | ID: mdl-36452504

ABSTRACT

The receptor protein tyrosine phosphatase (RPTP) PTPRJ (also known as DEP-1) has been identified as a negative regulator of the receptor tyrosine kinase FLT3 signalling in vitro. The inactivation of the PTPRJ gene in mice expressing the constitutively active, oncogenic receptor tyrosine kinase FLT3 ITD aggravated known features of leukaemogenesis, revealing PTPRJ's antagonistic role. FLT3 ITD mutations resulting in constitutively kinase activity and cell transformation frequently occur in patients with acute myeloid leukaemia (AML). Thus, in situ activation of PTPRJ could be used to abrogate oncogenic FLT3 signalling. The activity of PTPRJ is suppressed by homodimerization, which is mediated by transmembrane domain (TMD) interactions. Specific Glycine-to-Leucine mutations in the TMD disrupt oligomerization and inhibit the Epidermal Growth Factor Receptor (EGFR) and EGFR-driven cancer cell phenotypes. To study the effects of PTPRJ TMD mutant proteins on FLT3 ITD activity in cell lines, endogenous PTPRJ was inactivated and replaced by stable expression of PTPRJ TMD mutants. Autophosphorylation of wild-type and ITD-mutated FLT3 was diminished in AML cell lines expressing the PTPRJ TMD mutants compared to wild-type-expressing cells. This was accompanied by reduced FLT3-mediated global protein tyrosine phosphorylation and downstream signalling. Further, PTPRJ TMD mutant proteins impaired the proliferation and in vitro transformation of leukemic cells. Although PTPRJ's TMD mutant proteins showed impaired self-association, the specific phosphatase activity of immunoprecipitated proteins remained unchanged. In conclusion, this study demonstrates that the destabilization of PTPRJ TMD-mediated self-association increases the activity of PTPRJ in situ and impairs FLT3 activity and FLT3-driven cell phenotypes of AML cells. Thus, disrupting the oligomerization of PTPRJ in situ could prove a valuable therapeutic strategy to restrict oncogenic FLT3 activity in leukemic cells.

7.
J Mol Biol ; 434(21): 167826, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36115657

ABSTRACT

Accurate quantitative estimates of protein-membrane interactions are critical to studies of membrane proteins. Here, we demonstrate that thermodynamic analyses based on current hydropathy scales do not account for the significant and experimentally determined effects that Ca2+ or Mg2+ have on protein-membrane interactions. We examined distinct modes of interaction (interfacial partitioning and folding and transmembrane insertion) by studying three highly divergent peptides: Bid-BH3 (derived from apoptotic regulator Bid), peripherin-2-derived prph2-CTER, and the cancer-targeting pH-Low-Insertion-Peptide (pHLIP). Fluorescence experiments demonstrate that adding 1-2 mM of divalent cations led to a substantially more favorable bilayer partitioning and insertion, with free energy differences of 5-15 kcal/mol.


Subject(s)
Calcium , Lipid Bilayers , Magnesium , Peptides , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Peptides/chemistry , Spectrometry, Fluorescence , Thermodynamics , Calcium/chemistry , Magnesium/chemistry , BH3 Interacting Domain Death Agonist Protein/chemistry , Peripherins/chemistry
9.
Protein Sci ; 31(9): e4385, 2022 09.
Article in English | MEDLINE | ID: mdl-36040255

ABSTRACT

Cancerous tissues undergo extensive changes to their cellular environments that differentiate them from healthy tissues. These changes include changes in extracellular pH and Ca2+ concentrations, and the exposure of phosphatidylserine (PS) to the extracellular environment, which can modulate the interaction of peptides and proteins with the plasma membrane. Deciphering the molecular mechanisms of such interactions is critical for advancing the knowledge-based design of cancer-targeting molecular tools, such as pH-low insertion peptide (pHLIP). Here, we explore the effects of PS, Ca2+ , and peptide protonation state on the interactions of pHLIP with lipid membranes. Cellular studies demonstrate that exposed PS on the plasma membrane promotes pHLIP targeting. The magnitude of this effect is dependent on extracellular Ca2+ concentration, indicating that divalent cations play an important role in pHLIP targeting in vivo. The targeting mechanism is further explored with a combination of fluorescence and circular dichroism experiments in model membranes and microsecond-timescale all-atom molecular dynamics simulations. Our results demonstrate that Ca2+ is engaged in coupling peptide-lipid interactions in the unprotonated transmembrane conformation of pHLIP. The simulations reveal that while the pH-induced insertion leads to a strong depletion of PS around pHLIP, the Ca2+ -induced insertion has the opposite effect. Thus, extracellular levels of Ca2+ are crucial to linking cellular changes in membrane lipid composition with the selective targeting and insertion of pHLIP. The characterized Ca2+ -dependent coupling between pHLIP sidechains and PS provides atomistic insights into the general mechanism for lipid-coupled regulation of protein-membrane insertion by divalent cations.


Subject(s)
Membrane Lipids , Neoplasms , Cations, Divalent , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Membrane Lipids/metabolism , Peptides
10.
Chembiochem ; 23(8): e202100521, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35199442

ABSTRACT

Current immunotherapeutics often work by directing components of the immune system to recognize biomarkers on the surface of cancer cells to generate an immune response. However, variable changes in biomarker distribution and expression can result in inconsistent patient response. The development of a more universal tumor-homing strategy has the potential to improve selectivity and extend therapy to cancers with decreased expression or absence of specific biomarkers. Here, we designed a bifunctional agent that exploits the inherent acidic microenvironment of most solid tumors to selectively graft the surface of cancer cells with a formyl peptide receptor ligand (FPRL). Our approach is based on the pH(Low) insertion peptide (pHLIP), a unique peptide that selectively targets tumors in vivo by anchoring to cancer cells in a pH-dependent manner. We establish that selectively remodeling cancer cells with a pHLIP-based FPRL activates formyl peptide receptors on recruited immune cells, potentially initiating an immune response towards tumors.


Subject(s)
Neoplasms , Receptors, Formyl Peptide , Cell Line, Tumor , Chemotactic Factors , Humans , Ligands , Neoplasms/drug therapy , Peptides/metabolism , Peptides/pharmacology , Receptors, Formyl Peptide/metabolism
11.
J Med Chem ; 63(7): 3713-3722, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32196345

ABSTRACT

A growing class of immunotherapeutics work by redirecting components of the immune system to recognize markers on the surface of cancer cells. However, such modalities will remain confined to a relatively small subgroup of patients because of the lack of universal targetable tumor biomarkers among all patients. Here, we designed a unique class of agents that exploit the inherent acidity of solid tumors to selectively graft cancer cells with immuno-engager epitopes. Our targeting approach is based on pHLIP, a unique peptide that selectively targets tumors in vivo by anchoring to cancer cell surfaces in a pH-dependent manner. We established that pHLIP-antigen conjugates trigger the recruitment of antibodies to the surface of cancer cells and induce cytotoxicity by peripheral blood mononuclear and engineered NK cells. These results indicate that these agents have the potential to be applicable to treating a wide range of solid tumors and to circumvent problems associated with narrow windows of selectivity.


Subject(s)
Epitopes/pharmacology , Immunologic Factors/pharmacology , Membrane Proteins/pharmacology , 2,4-Dinitrophenol/chemistry , 2,4-Dinitrophenol/immunology , 2,4-Dinitrophenol/pharmacology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Epitopes/chemistry , Epitopes/immunology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Humans , Hydrogen-Ion Concentration , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Immunotherapy/methods , Killer Cells, Natural/drug effects , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Neoplasms/metabolism , Neoplasms/therapy
12.
J Mol Biol ; 431(24): 5004-5018, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31689432

ABSTRACT

The pH-Low Insertion Peptide (pHLIP) has emerged as an important tool for targeting cancer cells; it has been assumed that its targeting mechanism depends solely on the mild acidic environment surrounding tumors. Here, we examine the role of Ca2+ and Mg2+ on pHLIP's insertion, cellular targeting, and drug delivery. We demonstrate that physiologically relevant concentrations of either cation can shift the protonation-dependent transition by up to several pH units toward basic pH and induce substantial protonation-independent transmembrane insertion of pHLIP at pH as high as 10. Consistent with these results, the ability of pHLIP to deliver the cytotoxic compound monomethyl-auristatin-F to HeLa cells is increased several fold in presence of Ca2+. Complementary measurements with model membranes confirmed this Ca2+/Mg2+-dependent membrane-insertion mechanism. The magnitude of this alternative Ca2+/Mg2+-dependent effect is also modulated by lipid composition-specifically by the presence of phosphatidylserine-providing new clues to pHLIP's unique tumor-targeting ability in vivo. These results exemplify the complex coupling between protonation of anionic residues and lipid-selective targeting by divalent cations, which is relevant to the general signaling on membrane interfaces.


Subject(s)
Cations, Divalent/metabolism , Cell Membrane/metabolism , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Calcium/metabolism , Cations, Divalent/chemistry , Cell Membrane/chemistry , Cell Survival/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , Membrane Lipids/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Oligopeptides/pharmacology , Protein Binding , Protein Transport , Thermodynamics
13.
J Biol Chem ; 294(49): 18796-18806, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31676686

ABSTRACT

Receptor protein tyrosine phosphatases (RPTPs) play critical regulatory roles in mammalian signal transduction. However, the structural basis for the regulation of their catalytic activity is not fully understood, and RPTPs are generally not therapeutically targetable. This knowledge gap is partially due to the lack of known natural ligands or selective agonists of RPTPs. Contrary to what is known from structure-function studies of receptor tyrosine kinases (RTKs), RPTP activities have been reported to be suppressed by dimerization, which may prevent RPTPs from accessing their RTK substrates. We report here that homodimerization of protein tyrosine phosphatase receptor J (PTPRJ, also known as DEP-1) is regulated by specific transmembrane (TM) residues. We found that disrupting these interactions destabilizes homodimerization of full-length PTPRJ in cells, reduces the phosphorylation of the known PTPRJ substrate epidermal growth factor receptor (EGFR) and of other downstream signaling effectors, antagonizes EGFR-driven cell phenotypes, and promotes substrate access. We demonstrate these observations in human cancer cells using mutational studies and identified a peptide that binds to the PTPRJ TM domain and represents the first example of an allosteric agonist of RPTPs. The results of our study provide fundamental structural and functional insights into how PTPRJ activity is tuned by TM interactions in cells. Our findings also open up opportunities for developing peptide-based agents that could be used as tools to probe RPTPs' signaling mechanisms or to manage cancers driven by RTK signaling.


Subject(s)
ErbB Receptors/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Humans , Immunoblotting , Phosphorylation/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Signal Transduction/physiology , Spectrometry, Fluorescence
14.
ACS Chem Biol ; 13(9): 2623-2632, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30133245

ABSTRACT

Overexpression and deregulation of the epidermal growth factor receptor (EGFR) are implicated in multiple human cancers and therefore are a focus for the development of therapeutics. Current strategies aimed at inhibiting EGFR activity include monoclonal antibodies and tyrosine kinase inhibitors. However, activating mutations severely limit the efficacy of these therapeutics. There is thus a growing need for novel methods to inhibit EGFR. One promising approach involves blocking the association of the cytoplasmic juxtamembrane (JM) domain of EGFR, which has been shown to be essential for receptor dimerization and kinase function. Here, we aim to improve the selectivity and efficacy of an EGFR JM peptide mimic by utilizing the pH(low) insertion peptide (pHLIP), a unique molecule that can selectively target cancer cells solely based on their extracellular acidity. This delivery strategy potentially allows for more selective targeting to tumors than current methods and for anchoring the peptide mimic to the cytoplasmic leaflet of the plasma membrane, increasing its local concentration and thus efficacy. We show that the conjugated construct is capable of inhibiting EGFR phosphorylation and downstream signaling and of inducing concentration- and pH-dependent toxicity in cervical cancer cells. We envision that this approach could be expanded to the modulation of other single-span membrane receptors whose activity is mediated by JM domains.


Subject(s)
Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Multimerization/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , HeLa Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Domains/drug effects , Signal Transduction/drug effects
15.
Biochim Biophys Acta Biomembr ; 1860(2): 534-543, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29138065

ABSTRACT

The ability of the pH-Low Insertion Peptide (pHLIP) to insert into lipid membranes in a transbilayer conformation makes it an important tool for targeting acidic diseased tissues. pHLIP can also serve as a model template for thermodynamic studies of membrane insertion. We use intrinsic fluorescence and circular dichroism spectroscopy to examine the effect of replacing pHLIP's central proline on the pH-triggered lipid-dependent conformational switching of the peptide. We find that the P20G variant (pHLIP-P20G) has a higher helical propensity than the native pHLIP (pHLIP-WT), in both water:organic solvent mixtures and in the presence of lipid bilayers. Spectral shifts of tryptophan fluorescence reveal that with both pHLIP-WT and pHLIP-P20G, the deeply penetrating interfacial form (traditionally called State II) is populated only in pure phosphocholine bilayers. The presence of either anionic lipids or phosphatidylethanolamine leads to a much shallower penetration of the peptide (referred to here as State IIS, for "shallow"). This novel state can be differentiated from soluble state by a reduction in accessibility of tryptophans to acrylamide and by FRET to vesicles doped with Dansyl-PE, but not by a spectral shift in fluorescence emission. FRET experiments indicate free energies for interfacial partitioning range from 6.2 to 6.8kcal/mol and are marginally more favorable for pHLIP-P20G. The effective pKa for the insertion of both peptides depends on the lipid composition, but is always higher for pHLIP-P20G than for pHLIP-WT by approximately one pH unit, which corresponds to a difference of 1.3kcal/mol in free energy of protonation favoring insertion of pHLIP-P20G.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Proteins/chemistry , Phosphatidylcholines/chemistry , Amino Acid Sequence , Circular Dichroism , Fluorescence Resonance Energy Transfer , Hydrogen-Ion Concentration , Membrane Proteins/genetics , Mutation, Missense , Phosphatidylethanolamines/chemistry , Protein Folding , Protein Structure, Secondary , Spectrometry, Fluorescence , Thermodynamics
16.
Mol Pharm ; 14(2): 415-422, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28048942

ABSTRACT

The targeting of therapeutics specifically to diseased tissue is crucial for the development of successful cancer treatments. The approach here is based on the pH(low) insertion peptide (pHLIP) for the delivery of a potent mitotic inhibitor monomethyl auristatin F (MMAF). We investigated six pHLIP variants conjugated to MMAF to compare their efficacy in vitro against cultured cancer cells. While all pHLIP-MMAF conjugates exhibit potent pH- and concentration-dependent killing, their cytotoxicity profiles are remarkably different. We also show that the lead conjugate exhibits significant therapeutic efficacy in mouse models without overt toxicities. This study confirms pHLIP-monomethyl auristatin conjugates as possible new therapeutic options for cancer treatment and supports their further development.


Subject(s)
Aminobenzoates/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Oligopeptides/pharmacology , Peptides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Cell Line , Cell Line, Tumor , Female , HeLa Cells , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude
17.
Sci Rep ; 6: 28465, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27334357

ABSTRACT

Positively charged antimicrobial peptides have become promising agents for the treatment of cancer by inducing apoptosis though their preferential binding and disruption of negatively charged membranes, such as the mitochondrial membrane. (KLAKLAK)2 is such a peptide but due to its polarity, it cannot cross the cellular membrane and therefore relies on the use of a delivery agent. For targeted delivery, previous studies have relied on cell penetrating peptides, nanoparticles or specific biomarkers. Herein, we investigated the first use of pHLIP to selectively target and directly translocate (KLAKLAK)2 into the cytoplasm of breast cancer cells, based on the acidic tumor micro-environment. With the goal of identifying a lead conjugate with optimized selective cytotoxicity towards cancer cells, we analyzed a family of (KLAKLAK)2 analogs with varying size, polarity and charge. We present a highly efficacious pHLIP conjugate that selectively induces concentration- and pH-dependent toxicity in breast cancer cells.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Membrane Proteins/chemistry , Amino Acid Sequence , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Humans , Hydrogen-Ion Concentration , Membrane Proteins/chemical synthesis , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Solid-Phase Synthesis Techniques
18.
Biochem J ; 472(3): 287-95, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26424552

ABSTRACT

Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signalling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G-proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumour while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. In the present study, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumours. We find that the conjugation of a peptide fragment derived from the third intracellular loop (i3) of the protease-activated receptor 1 (PAR1) to a peptide that can selectively target tumours solely based on their acidity [pH(Low) Insertion Peptide (pHLIP)], produces a construct capable of effectively down-regulating PAR1 activity in a concentration- and pH-dependent manner and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs.


Subject(s)
Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Membrane Proteins/pharmacology , Neoplasm Proteins/biosynthesis , Neoplasms/drug therapy , Receptor, PAR-1/biosynthesis , Cell Death/drug effects , HeLa Cells , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Neoplasms/metabolism , Neoplasms/pathology
19.
Bioconjug Chem ; 26(10): 2021-4, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26340430

ABSTRACT

A strategy is introduced for enhancing the cellular selectivity of Amphotericin B (AmB) and other classes of membrane-disrupting agents. This strategy involves attaching the agent to a molecular umbrella to minimize the disruptive power of aggregated forms. Based on this approach, AmB has been coupled to a molecular umbrella derived from one spermidine and two cholic acid molecules and found to have antifungal activities approaching that of the native drug. However, in sharp contrast to AmB, the hemolytic activity and the cytotoxcity of this conjugate toward HEK293 T cells have been dramatically reduced.


Subject(s)
Amphotericin B/chemistry , Amphotericin B/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Amphotericin B/adverse effects , Animals , Cholic Acid/chemistry , Drug Evaluation, Preclinical/methods , Erythrocytes/drug effects , HEK293 Cells/drug effects , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Spermidine/chemistry , Structure-Activity Relationship
20.
Mol Pharm ; 12(4): 1250-8, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25741818

ABSTRACT

Localized delivery is vital for the successful development of novel and effective therapeutics for the treatment of cancer. The targeting and delivery described herein is based on the pH (low) insertion peptide (pHLIP), a unique delivery peptide that can selectively target tumors in mice and translocate and release cargo molecules intracellularly based solely on the low extracellular pH intrinsic to cancer cells. In this study, we investigate the efficacy of pHLIP to target and deliver the highly potent and clinically validated microtubule inhibitor monomethyl auristatin E (MMAE) to cancer cells and breast tumors. We show that pHLIP-MMAE conjugates induce a potent cytotoxic effect (>90% inhibition of cell growth) in a concentration- and pH-dependent manner after only 2 h incubation without any apparent disruption of the plasma membrane. pHLIP-MMAE conjugates exhibit between an 11- and 144-fold higher antiproliferative effect at low pH than that at physiological pH and a pronounced pH-dependent cytotoxicity as compared to that of free drug. Furthermore, we demonstrate that a pHLIP-MMAE drug conjugate effectively targets triple-negative breast tumor xenografts in mice. These results indicate that pHLIP-based auristatin conjugates may have an enhanced therapeutic window as compared to that of free drug, providing a targeting mechanism to attenuate systemic toxicity.


Subject(s)
Membrane Proteins/chemistry , Oligopeptides/chemistry , Triple Negative Breast Neoplasms/drug therapy , Aminobenzoates/chemistry , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Chemistry, Pharmaceutical/methods , Circular Dichroism , Drug Delivery Systems , Female , HeLa Cells , Humans , Hydrogen-Ion Concentration , Mice , Neoplasm Transplantation , Peptides/chemistry , Phosphatidylcholines/chemistry , Spectrometry, Fluorescence , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...