Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Ther ; 22(7): 568-77, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25781651

ABSTRACT

Non-invasive gene delivery across the blood-spinal cord barrier (BSCB) remains a challenge for treatment of spinal cord injury and disease. Here, we demonstrate the use of magnetic resonance image-guided focused ultrasound (MRIgFUS) to mediate non-surgical gene delivery to the spinal cord using self-complementary adeno-associated virus serotype 9 (scAAV9). scAAV9 encoding green fluorescent protein (GFP) was injected intravenously in rats at three dosages: 4 × 10(8), 2 × 10(9) and 7 × 10(9) vector genomes per gram (VG g(-1)). MRIgFUS allowed for transient, targeted permeabilization of the BSCB through the interaction of focused ultrasound (FUS) with systemically injected Definity lipid-shelled microbubbles. Viral delivery at 2 × 10(9) and 7 × 10(9) VG g(-1) leads to robust GFP expression in FUS-targeted regions of the spinal cord. At a dose of 2 × 10(9) VG g(-1), GFP expression was found in 36% of oligodendrocytes, and in 87% of neurons in FUS-treated areas. FUS applications to the spinal cord could address a long-term goal of gene therapy: delivering vectors from the circulation to diseased areas in a non-invasive manner.


Subject(s)
Genetic Therapy , Green Fluorescent Proteins/genetics , Spinal Cord Diseases/therapy , Spinal Cord/metabolism , Animals , Dependovirus , Green Fluorescent Proteins/metabolism , Magnetic Resonance Imaging/methods , Male , Neurons/metabolism , Oligodendroglia , Rats, Wistar , Spinal Cord/immunology , Spinal Cord Diseases/genetics , Ultrasonography/methods
2.
J Neurochem ; 81(4): 673-85, 2002 May.
Article in English | MEDLINE | ID: mdl-12065627

ABSTRACT

The expression of the tryptophan hydroxylase (TPH) gene, encoding the rate-limiting enzyme of serotonin biosynthesis, is tightly regulated both at the transcriptional and at the post-transcriptional levels. In the pineal gland, transcription of the gene is activated in response to an intracellular circadian increase of the cAMP concentration. We have previously shown that transcription of a 2.1-kb fragment of the human TPH promoter is induced by cAMP, although it lacks the canonical cAMP responsive element, CRE. The minimal promoter (-73/+29) has only weak transcriptional activity but is responsive to cAMP. It contains an inverted CCAAT box, which was demonstrated to be involved in this response. Here, we have extended our investigation to the functional features of the inverted CCAAT box in the -252/+29 TPH promoter, which has a higher basal activity. We show that an additional cis -acting sequence, the adjacent GC-rich region, cooperates with the inverted CCAAT box for the full activation of basal transcription, and that both elements are essential for the full cAMP response. We also show that in pinealocytes, NF-Y and Sp1 transactivators bind the inverted CCAAT box and GC-rich-region, respectively. These factors participate in a novel pathway for the cAMP-mediated response of the TPH promoter, which is independent of the canonical CRE-mediated response.


Subject(s)
CCAAT-Binding Factor/metabolism , Cyclic AMP/pharmacology , Pineal Gland/metabolism , Sp1 Transcription Factor/metabolism , Transcriptional Activation/physiology , Tryptophan Hydroxylase/genetics , Animals , Base Sequence , Binding Sites/physiology , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cells, Cultured , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , GC Rich Sequence , Macromolecular Substances , Molecular Sequence Data , Nuclear Proteins/metabolism , Pineal Gland/cytology , Pineal Gland/drug effects , Promoter Regions, Genetic/physiology , Rats , Rats, Wistar , Transcription Factor AP-2 , Transcription Factors/metabolism , Transcriptional Activation/drug effects
3.
J Biol Chem ; 275(47): 36683-90, 2000 Nov 24.
Article in English | MEDLINE | ID: mdl-10973977

ABSTRACT

Choline acetyltransferase (ChAT), the biosynthetic enzyme of acetylcholine, and the vesicular acetylcholine transporter (VAChT) are both required for cholinergic neurotransmission. These proteins are encoded by two embedded genes, the VAChT gene lying within the first intron of the ChAT gene. In the nervous system, both ChAT and VAChT are synthesized only in cholinergic neurons, and it is therefore likely that the cell type-specific expression of their genes is coordinately regulated. It has been suggested that a 2336-base pair genomic region upstream from the ChAT and VAChT coding sequences drives ChAT gene expression in cholinergic structures. We investigated whether this region also regulates VAChT gene transcription. Transfection assays showed that this region strongly represses the activity of the native VAChT promoters in non-neuronal cells, but has no major effect in neuronal cells whether or not they express the endogenous ChAT and VAChT genes. The silencer activity of this region is mediated solely by a repressor element 1 or neuron-restrictive silencer element (RE1/NRSE). Moreover, several proteins, including RE1-silencing transcription factor or neuron-restrictive silencer factor, are recruited by this regulatory sequence. These data suggest that this upstream region and RE1/NRSE co-regulate the expression of the ChAT and VAChT genes.


Subject(s)
Carrier Proteins/genetics , Choline O-Acetyltransferase/genetics , Gene Expression Regulation , Membrane Transport Proteins , Vesicular Transport Proteins , Animals , Base Sequence , Introns , Mice , Molecular Sequence Data , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Structure-Activity Relationship , Synaptic Transmission/genetics , Transfection , Tumor Cells, Cultured , Vesicular Acetylcholine Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...