Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33839322

ABSTRACT

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Subject(s)
Genetic Therapy/methods , Heart Failure/therapy , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Relaxin/administration & dosage , Animals , Calcium-Binding Proteins/metabolism , Dependovirus/genetics , Disease Models, Animal , Genetic Vectors/administration & dosage , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Treatment Outcome , Ventricular Function
2.
PLoS Genet ; 16(11): e1009106, 2020 11.
Article in English | MEDLINE | ID: mdl-33151932

ABSTRACT

Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.


Subject(s)
Hirschsprung Disease/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Cell Survival/genetics , Computer Simulation , Copper-Transporting ATPases/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Knockout Techniques , Humans , Infant , Male , Mice , Protein Inhibitors of Activated STAT/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Exome Sequencing
3.
Neurogastroenterol Motil ; 32(9): e13868, 2020 09.
Article in English | MEDLINE | ID: mdl-32391639

ABSTRACT

BACKGROUND: A Giardia outbreak in Bergen, Norway, caused postinfectious functional gastrointestinal disorders (PI-FGIDs). Despite the devastating effects of this outbreak, it presented a unique chance to investigate the implication on the dysregulation of genetic pathways in PI-FGID. METHODS: We performed the first comparative expression profiling of miRNAs and their potential target genes in microdissected rectal biopsies from 20 Giardia-induced PI-FGID patients vs 18 healthy controls by nCounter analysis. Subsequently, candidates were validated on protein level by immunostaining. KEY RESULTS: miRNA profiling on rectal biopsy samples from 5 diarrhea-predominant PI-IBS cases compared to 10 healthy controls revealed differential expression in the epithelial layer. The top five regulated miRNAs were implicated in GI disease, inflammatory response, and immunological disease. Subsequently, these miRNAs and 100 potential mRNA targets were examined in 20 PI-FGID cases and 18 healthy controls in both the mucosal epithelium and the lamina propria. Although deregulation of the selected miRNAs could not be verified in the larger sample set, mRNAs involved in barrier function were downregulated in the epithelium. Pro-inflammatory genes and genes implicated in epigenetic modifications were upregulated in the lamina propria. Immunostaining for selected candidates on 17 PI-FGID cases and 16 healthy controls revealed increased tryptase levels as well as a decreased and aberrant subcellular expression of occludin. CONCLUSIONS AND INFERENCES: Genes relevant to immune and barrier function as well as stress response and epigenetic modulation are differentially expressed in PI-FGIDs and may contribute to disease manifestation.


Subject(s)
Gastrointestinal Diseases/genetics , Giardiasis/complications , Intestinal Mucosa/metabolism , MicroRNAs/genetics , Adult , Female , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/microbiology , Gene Expression Profiling , Humans , Male , MicroRNAs/metabolism , Middle Aged , Young Adult
4.
Gastroenterology ; 147(1): 65-68.e10, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24726755

ABSTRACT

Microvillus inclusion disease (MVID) is a disorder of intestinal epithelial differentiation characterized by life-threatening intractable diarrhea. MVID can be diagnosed based on loss of microvilli, microvillus inclusions, and accumulation of subapical vesicles. Most patients with MVID have mutations in myosin Vb that cause defects in recycling of apical vesicles. Whole-exome sequencing of DNA from patients with variant MVID showed homozygous truncating mutations in syntaxin 3 (STX3). STX3 is an apical receptor involved in membrane fusion of apical vesicles in enterocytes. Patient-derived organoid cultures and overexpression of truncated STX3 in Caco-2 cells recapitulated most characteristics of variant MVID. We conclude that loss of STX3 function causes variant MVID.


Subject(s)
Malabsorption Syndromes/genetics , Microvilli/pathology , Mucolipidoses/genetics , Mutation/genetics , Qa-SNARE Proteins/genetics , Biopsy , Caco-2 Cells , Duodenum/pathology , Female , Humans , Infant , Intestinal Mucosa/pathology , Malabsorption Syndromes/pathology , Male , Microvilli/genetics , Mucolipidoses/pathology , Organ Culture Techniques
5.
Clin Transl Gastroenterol ; 5: e46, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24430113

ABSTRACT

OBJECTIVES: The NOS2 gene encodes for the inducible nitric oxide synthase (iNOS), responsible for nitric oxide (NO) production, which contributes to antimicrobial and antipathogenic activities. Higher levels of both iNOS and NO-induced damage have been observed in inflammatory bowel disease (IBD) patients. NOS2 may have a role in a specific subset of IBD patients with severe and/or extensive colitis. Therefore, the aim of this study is to examine the role of NOS2 in such a subset, very early onset IBD (VEO-IBD). METHODS: Seventeen tag single nucleotide polymorphisms (SNPs) in the NOS2 gene were successfully genotyped in VEO-IBD patients. Genetic associations were replicated in an independent VEO-IBD cohort. Functional analysis for iNOS activity was performed on the most significantly associated functional variant. RESULTS: The NOS2 rs2297518 SNP was found to be associated in VEO-IBD in two independent cohorts. Upon combined analysis, a coding variant (S608L) showed the strongest association with VEO-IBD (Pcombined=1.13 × 10(-6), OR (odds ratio)=3.398 (95% CI (confidence interval) 2.02-5.717)) as well as associations with VEO-Crohn's disease and VEO-ulcerative colitis (UC). This variant also showed an association with UC diagnosed between 11 and 17 years of age but not with adult-onset IBD (>17 years). B-cell lymphoblastoid cell lines genotyped for the risk variant as well as Henle-407 cells transfected with a plasmid construct with the risk variant showed higher NO production. Colonic biopsies of VEO-IBD patients showed higher immunohistochemical staining of nitrotyrosine, indicating more nitrosative stress and tissue damage. CONCLUSIONS: These studies suggest the importance of iNOS in genetic susceptibility to younger IBD presentation due to higher NO production.

6.
Hum Mutat ; 31(5): 544-51, 2010 May.
Article in English | MEDLINE | ID: mdl-20186687

ABSTRACT

Autosomal recessive microvillus inclusion disease (MVID) is characterized by an intractable diarrhea starting within the first few weeks of life. The hallmarks of MVID are a lack of microvilli on the surface of villous enterocytes, occurrence of intracellular vacuoles lined by microvilli (microvillus inclusions), and the cytoplasmic accumulation of periodic acid-Schiff (PAS)-positive vesicles in enterocytes. Recently, we identified mutations in MYO5B, encoding the unconventional type Vb myosin motor protein, in a first cohort of nine MVID patients. In this study, we identified 15 novel nonsense and missense mutations in MYO5B in 11 unrelated MVID patients. Fluorescence microscopy, Western blotting, and electron microscopy were applied to analyze the effects of MYO5B siRNA knock-down in polarized, brush border possessing CaCo-2 cells. Loss of surface microvilli, increased formation of microvillus inclusions, and subapical enrichment of PAS-positive endomembrane compartments were induced in polarized, filter-grown CaCo-2 cells, following MYO5B knock-down. Our data indicate that MYO5B mutations are a major cause of microvillus inclusion disease and that MYO5B knock-down recapitulates most of the cellular phenotype in vitro, thus independently showing loss of MYO5B function as the cause of microvillus inclusion disease.


Subject(s)
Diarrhea, Infantile/genetics , Digestive System Abnormalities/genetics , Malabsorption Syndromes/genetics , Microvilli/pathology , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Adolescent , Blotting, Western , Caco-2 Cells , Child , Child, Preschool , Codon, Nonsense/genetics , DNA Mutational Analysis , Female , Humans , Infant , Male , Mutation, Missense/genetics , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , RNA Interference/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...