Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JIMD Rep ; 61(1): 19-24, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34485013

ABSTRACT

Tetrahydrobiopterin (BH4) is a cofactor that participates in the biogenesis reactions of a variety of biomolecules, including l-tyrosine, l-3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, nitric oxide, and glycerol. Dihydropteridine reductase (DHPR, EC 1.5.1.34) is an enzyme involved in the BH4 regeneration. DHPR deficiency (DHPRD) is an autosomal recessive disorder, leading to severe and progressive neurological manifestations, which cannot be exclusively controlled by l-phenylalanine (l-Phe) restricted diet. In fact, the supplementation of neurotransmitter precursors is more decisive in the disease management, and the administration of sapropterin dihydrochloride may also provide positive effects. From the best of our knowledge, there is limited information regarding DHPRD in the past 5 years in the literature. Here, we describe the medical journey of the first patient to have DHPRD confirmed by molecular diagnostic methods in Brazil. The patient presented with two pathogenic variants of the quinoid dihydropteridine reductase (QDPR) gene-which codes for the DHPR protein, one containing the in trans missense mutation c.515C>T (pPro172Leu) in exon 5 and the other containing the same type of mutation in the exon 7 (c.635T>C [p.Phe212Ser]). The authors discuss their experience with sapropterin dihydrochloride for the treatment of DHPRD in this case report.

2.
Brain Dev ; 40(7): 530-536, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29685341

ABSTRACT

BACKGROUND: Tetrahydrobiopterin (BH4) is the cofactor for 6-pyruvoyl-tetrahydropterin synthase (PTPS); it is involved in BH4 biosynthesis and is encoded by PTS gene. Its deficiency (PTPSD) is characterized by hyperphenylalaninemia (HPA) and deficit in central monoamine neurotransmitters. We describe the clinical and mutational spectrum of five patients with PTPSD, from four unrelated Mexican families. All patients had symptomatic diagnosis and presented severe early neurological manifestations and HPA. METHODS: Clinical and biochemical data from studied patients were recorded. Responsible PTPSD genotypes was determined by direct and bidirectional Sanger DNA sequencing of the six PTS coding exons and their exon-intron borders, and these were directly searched in the available relatives. The novel PTS missense variant [NM_3000317.2:331G > T, p.(Ala111Ser)] was subjected to in silico, to predict a possible deleterious effect. RESULTS: Diminished fetal movements were perceived as a uniform characteristic in the studied group. DNA sequencing showed two known p.(Arg25∗) and p.(Val132TyrFs∗19) and the novel missense p.(Ala111Ser) PTS variants, the latter representing potentially a frequent PTPSD-responsible allele (50%, 4/8) in Mexican patients. In silico protein modeling analysis of the p.(Ala111Ser) variant revealed loss of hydrophobic interactions between the alanine and neighboring valines, suggesting that these changes in polarity may be detrimental for enzyme function, structure and/or stability. CONCLUSIONS: This work contributes to the knowledge of PTPS molecular spectrum. The delayed diagnosis of these patients emphasizes the importance of considering BH4 metabolism defects in the differential diagnosis of HPA, especially for countries that are beginning their HPA newborn screening programs.


Subject(s)
Mutation , Phosphorus-Oxygen Lyases/deficiency , Phosphorus-Oxygen Lyases/genetics , Child, Preschool , Computer Simulation , Exons , Family , Humans , Hydrophobic and Hydrophilic Interactions , Infant , Mexico , Models, Molecular , Phenotype , Phosphorus-Oxygen Lyases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL