Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1216(25): 4933-40, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19446825

ABSTRACT

Polymeric ion-exchange monoliths typically exhibit low capacities due to the limited surface area on the globules of the monoliths. The ion-exchange binding of protonated weakly basic analytes on deprotonated carboxylate sites on methacrylate polymer monoliths has been increased by templating the monoliths with silica nanoparticles. The templating method is achieved by adding the nanoparticles as a suspension to the polymerisation mixture. After polymerisation, the nanoparticles are removed by washing the monolith with strong base. Monolithic columns prepared using this procedure have exhibited a 33-fold increase in ion-exchange capacity when compared to untemplated monoliths prepared and treated under similar conditions. The templating procedure does not alter the macroporous properties of the polymer monolith, confirmed through scanning electron microscopy and BET surface area analysis, but provides increased capacity predominantly through the re-orientation of more carboxylic acid groups. The resulting increase in ion-exchange capacity has proven to be useful for the preconcentration and separation of neurotransmitters by in-line solid-phase extraction-capillary electrophoresis. The increased capacity of the templated monolith allowed the injection time to be increased 10 times over that of an untemplated monolith, allowing 10 times more sample to be injected with the efficiencies and recoveries remaining unaffected. The enhancement in sensitivity for the test mixture of neurotransmitter (dopamine, norepinephrine and metanephrine) ranged 1500-1900 compared to a normal hydrodynamic injection in capillary electrophoresis. Efficiencies obtained for the neurotransmitters were 100000-260000 plates, typical of those obtained in capillary zone electrophoresis. The applicability of the increased capacity silica nano-templated polymer monolith was demonstrated by analysing trace levels of caffeine in biological, food and environmental samples.


Subject(s)
Electrophoresis, Capillary , Methacrylates/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Solid Phase Extraction , Beverages/analysis , Caffeine/analysis , Caffeine/urine , Humans , Ion Exchange , Nanoparticles/ultrastructure , Neurotransmitter Agents/analysis , Sensitivity and Specificity , Water/chemistry
2.
Electrophoresis ; 30(1): 230-48, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19156661

ABSTRACT

Poor sensitivity is still considered to be one of the major limitations of electrophoresis, which is surprising given the power, flexibility and versatility of many of the approaches to on-line concentration that have developed over the last 20 years. This is still a very active area of interest and this review will cover developments in the field over the last two years since the last review (Electrophoresis 2007, 28, 254-281) through to June 2008. It includes developments in the fields of stacking, covering all methods from field-amplified sample stacking and large volume sample stacking, through to ITP, dynamic pH junction and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.


Subject(s)
Capillary Electrochromatography/methods , Electrophoresis, Capillary/methods , Electrophoresis, Microchip/methods , Chemical Fractionation , Electrophoresis , Hydrogen-Ion Concentration , Sensitivity and Specificity , Solid Phase Extraction
3.
Analyst ; 133(10): 1380-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18810286

ABSTRACT

A polymer monolith bearing weak cation-exchange functionality was prepared for the purpose of demonstrating pH-selective extraction and elution in in-line solid-phase extraction-capillary electrophoresis (SPE-CE) utilising a model set of cationic analytes, namely imidazole, lutidine and 3-phenylpropanamine. Optimization of the electrolyte conditions for efficient elution of the adsorbed analytes using a moving pH boundary required that the capillary and monolith be filled with 44 mM sodium acetate at high pH (pH 6) and a low pH electrolyte of 3 mM sodium acetate pH 3 was placed in the electrolyte vials. This combination allowed the adsorbed analytes to be simultaneously eluted and focused into narrow bands, with peak widths of the eluted analytes having a baseline width of 1.2 s immediately after the monolith. Using these optimum elution conditions, the versatility of the SPE-CE approach was demonstrated by removing unwanted adsorbed components after extraction with a wash at a different pH and also by selecting a pH at which only some of the model weak bases were ionised. The analytical performance of the approach was evaluated and the relative standard deviation for peak heights, peak area and migration times were in the ranges of 1.4-5.3, 1.2-3.3 and 0.4-1.2% respectively. Analytes exhibited linear calibrations with r(2) values ranging from 0.996 to 0.999 over two orders of magnitude. Analyte pre-concentration provided excellent sensitivity, and limits of detection for the analyte used in this study were in the range 8.0-30 ng ml(-1), which was an enhancement of 63 when compared to normal hydrodynamic injection occupying 1.3% of the capillary of these bases in water.

4.
J Chromatogr A ; 1175(1): 117-26, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-17980375

ABSTRACT

A novel approach for in-line solid-phase extraction capillary electrophoresis (SPE-CE) for basic analytes was developed. The method is based on the use of a weak cation-exchange monolith synthesised in situ in the front end of the CE capillary via photoinitiated polymerization to form poly(methacrylic acid-co-ethylene glycol dimethacrylate), which was used to create the SPE phase in-line with the CE separation capillary. The monolithic SPE material exhibited a surface area of 23.1 m2/g and a capacity of 403 nM for dopamine. Adsorption of the analytes as protonated, cationic species onto the SPE phase was achieved using an electrolyte of 6 mM phosphate and 12 mM sodium ion, buffered at pH 7.0, which is above the pKa of the monolith but below the pKa of the analytes. Elution of the analytes from the SPE phase was achieved using an electrolyte with a pH below that of the pKa of the monolith, namely 12 mM phosphate and 12 mM sodium ion, buffered at pH 3.0. Due to the discontinuous electrolyte combination, analytes were simultaneously eluted and focused as the electrophoretically mobilised pH step boundary moved through the SPE monolith, after which the analytes were separated by conventional CZE in the remainder of the capillary. Quantitative extraction from a solution of 0.5 microg/ml dopamine and epinephrine was achieved when flushing up to 15 column volumes of sample through the capillary. The limits of detection (S/N=3) for dopamine and epinephrine were 3.7 and 4.3 ng/ml, and this method provided a sensitivity enhancement for dopamine of 462 times compared to CZE using hydrodynamic injection. The developed method was used to preconcentrate a test mixture of neurotransmitters comprising dopamine, epinephrine, 5-hydroxytryptamine, metanephrine and also histamine. The applicability of this approach to real life samples was demonstrated by using a urine sample from a healthy person to detect dopamine at sub-ppm levels.


Subject(s)
Methacrylates/chemistry , Neurotransmitter Agents/isolation & purification , Proton-Motive Force , Solid Phase Extraction/methods , Chromatography, Ion Exchange , Electrolytes , Electrophoresis, Capillary , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...