Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 16(6): 928-937, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086552

ABSTRACT

The unmet medical need for drug-resistant tuberculosis (DRTB) is a significant concern. Accordingly, identifying new drug targets for tuberculosis (TB) treatment and developing new therapies based on these drug targets is one of the strategies to tackle DRTB. QcrB is an innovative drug target to create treatments for DRTB. This article highlights QcrB inhibitors and their therapeutic compositions for treating TB. The literature for this article was gathered from PubMed and free patent databases utilizing different keywords related to QcrB inhibitor-based inventions. The data was collected from the conceptualization of telacebec (2010) QcrB to December 2022. A little interesting and encouraging research has been performed on QcrB inhibitors. Telacebec and TB47 are established QcrB inhibitors in the clinical trial. The inventive QcrB inhibitor-based drug combinations can potentially handle DRTB and reduce the TB therapy duration. The authors anticipate great opportunities in fostering QcrB inhibitor-based patentable pharmaceutical inventions against TB. Drug repurposing can be a promising strategy to get safe and effective QcrB inhibitors. However, developing drug resistance, drug tolerance, and selectivity of QcrB inhibitors for Mtb will be the main challenges in developing effective QcrB inhibitors. In conclusion, QcrB is a promising drug target for developing effective treatments for active, latent, and drug-resistant TB. Many inventive and patentable combinations and compositions of QcrB inhibitors with other anti-TB drugs are anticipated as future treatments for TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
2.
Drug Dev Res ; 81(5): 573-584, 2020 08.
Article in English | MEDLINE | ID: mdl-32173897

ABSTRACT

Some novel non-ulcerogenic N-substitutedphenyl-6-oxo-3-phenylpyridazines as COX-2 inhibitors have been developed (Supplementary material Appendix 1). The novel aldehyde 3 was prepared by reacting 6-phenylpyridazin-3(2H)-one with 4-fluorobenzaldehyde. The aldehyde 3 was reacted with different hydrazines and thiazolidin-4-ones to obtain the novel N-substitutedphenyl-6-oxo-3-phenylpyridazine derivatives. These were assessed for their anti-inflammatory potential and gastric ulcerogenic effects. The molecular docking investigations were also undertaken. The spectroscopic data were coherent with the allocated structures of the compounds. The compounds 4a (IC50 = 17.45 nm; p < .05), 4b (IC50 = 17.40 nm; p < .05), 5a (IC50 = 16.76 nm; p < .05), and 10 (IC50 = 17.15 nm; p < .05) displayed better COX-2 inhibitory activity than celecoxib (IC50 = 17.79 nm; p < .05). These findings were consistent with the molecular docking investigations of 4a, 4b, 5a, and 10. The in vivo anti-inflammatory profile of 4a, 4b, 5a, and 10 was also superior to celecoxib and indomethacin. The compounds 4b, 5a, and 10 revealed no gastric ulcerogenic effects, wherein the compound 4a produced almost negligible gastric ulcerogenic effects than celecoxib and indomethacin. The compounds 4a, 4b, 5a, and 10 have been postulated as promising non-ulcerogenic COX-2 inhibitors.


Subject(s)
Cyclooxygenase 2 Inhibitors , Pyridazines , Animals , Celecoxib/adverse effects , Celecoxib/therapeutic use , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/therapeutic use , Edema/drug therapy , Female , Indomethacin/adverse effects , Indomethacin/therapeutic use , Male , Molecular Docking Simulation , Molecular Structure , Pyridazines/adverse effects , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/therapeutic use , Rats, Wistar , Stomach Ulcer/chemically induced , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...