Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mucosal Immunol ; 17(2): 155-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185331

ABSTRACT

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Aged , Adult , Humans , Alveolar Epithelial Cells , Cytosol , Lung/microbiology , Macrophages, Alveolar
2.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37865090

ABSTRACT

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Biofilms , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Tuberculosis/pathology , Virulence , Biomechanical Phenomena
3.
Nature ; 620(7973): 374-380, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532932

ABSTRACT

Low-grade inflammation is a hallmark of old age and a central driver of ageing-associated impairment and disease1. Multiple factors can contribute to ageing-associated inflammation2; however, the molecular pathways that transduce aberrant inflammatory signalling and their impact in natural ageing remain unclear. Here we show that the cGAS-STING signalling pathway, which mediates immune sensing of DNA3, is a critical driver of chronic inflammation and functional decline during ageing. Blockade of STING suppresses the inflammatory phenotypes of senescent human cells and tissues, attenuates ageing-related inflammation in multiple peripheral organs and the brain in mice, and leads to an improvement in tissue function. Focusing on the ageing brain, we reveal that activation of STING triggers reactive microglial transcriptional states, neurodegeneration and cognitive decline. Cytosolic DNA released from perturbed mitochondria elicits cGAS activity in old microglia, defining a mechanism by which cGAS-STING signalling is engaged in the ageing brain. Single-nucleus RNA-sequencing analysis of microglia and hippocampi of a cGAS gain-of-function mouse model demonstrates that engagement of cGAS in microglia is sufficient to direct ageing-associated transcriptional microglial states leading to bystander cell inflammation, neurotoxicity and impaired memory capacity. Our findings establish the cGAS-STING pathway as a driver of ageing-related inflammation in peripheral organs and the brain, and reveal blockade of cGAS-STING signalling as a potential strategy to halt neurodegenerative processes during old age.


Subject(s)
Aging , Brain , Cognitive Dysfunction , Inflammation , Membrane Proteins , Neurodegenerative Diseases , Nucleotidyltransferases , Animals , Humans , Mice , Aging/metabolism , Aging/pathology , Brain/metabolism , Brain/pathology , Bystander Effect , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , DNA/immunology , Inflammation/enzymology , Inflammation/metabolism , Membrane Proteins/metabolism , Memory Disorders/enzymology , Memory Disorders/metabolism , Microglia/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/metabolism , Nucleotidyltransferases/metabolism , Organ Specificity , Signal Transduction , Hippocampus/metabolism , Hippocampus/pathology
4.
Nature ; 603(7899): 145-151, 2022 03.
Article in English | MEDLINE | ID: mdl-35045565

ABSTRACT

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SARS-CoV-2/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
5.
Elife ; 102021 07 05.
Article in English | MEDLINE | ID: mdl-34219648

ABSTRACT

Uropathogenic Escherichia coli (UPEC) proliferate within superficial bladder umbrella cells to form intracellular bacterial communities (IBCs) during early stages of urinary tract infections. However, the dynamic responses of IBCs to host stresses and antibiotic therapy are difficult to assess in situ. We develop a human bladder-chip model wherein umbrella cells and bladder microvascular endothelial cells are co-cultured under flow in urine and nutritive media respectively, and bladder filling and voiding mimicked mechanically by application and release of linear strain. Using time-lapse microscopy, we show that rapid recruitment of neutrophils from the vascular channel to sites of infection leads to swarm and neutrophil extracellular trap formation but does not prevent IBC formation. Subsequently, we tracked bacterial growth dynamics in individual IBCs through two cycles of antibiotic administration interspersed with recovery periods which revealed that the elimination of bacteria within IBCs by the antibiotic was delayed, and in some instances, did not occur at all. During the recovery period, rapid proliferation in a significant fraction of IBCs reseeded new foci of infection through bacterial shedding and host cell exfoliation. These insights reinforce a dynamic role for IBCs as harbors of bacterial persistence, with significant consequences for non-compliance with antibiotic regimens.


Urinary tract infections are one of the most common reasons people need antibiotics. These bacterial infections are typically caused by uropathogenic Escherichia coli (also known as UPEC), which either float freely in the urine and wash away when the bladder empties, or form communities inside cells that the bladder struggles to clear. It is possible that the bacteria living within cells are also more protected from the immune system and antibiotics. But this is hard to study in animal models. To overcome this, Sharma et al. built a 'bladder-chip' which mimics the interface between the blood vessels and the tissue layers of the human bladder. Similar chip devices have also been made for other organs. However, until now, no such model had been developed for the bladder. On the chip created by Sharma et al. is a layer of bladder cells which sit at the bottom of a channel filled with diluted human urine. These cells were infected with UPEC, and then imaged over time to see how the bacteria moved, interacted with the bladder cells, and aggregated together. Immune cells from human blood were then added to a vascular channel underneath the bladder tissue, which is coated with endothelial cells that normally line blood vessels. The immune cells rapidly crossed the endothelial barrier and entered the bladder tissue, and swarmed around sites of infection. In some instances, they released the contents of their cells to form net-like traps to catch the bacteria. But these traps failed to remove the bacteria living inside bladder cells. Antibiotics were then added to the urine flowing over the bladder cells as well as the vascular channel, similar to how drugs would be delivered in live human tissue. Sharma et al. discovered that the antibiotics killed bacteria residing in bladder cells slower than bacteria floating freely in the urine. Furthermore, they found that bacteria living in tightly packed communities within bladder cells were more likely to survive treatment and go on to re-infect other parts of the tissue. Antibiotic resistance is a pressing global challenge, and recurrent urinary tract infections are a significant contributor. The bladder-chip presented here could further our understanding of how these bacterial infections develop in vivo and how good antibiotics are at removing them. This could help researchers identify the best dosing and treatment strategies, as well as provide a platform for rapidly testing new antibiotic drugs and other therapies.


Subject(s)
Bacteriological Techniques/instrumentation , Lab-On-A-Chip Devices , Urinary Bladder/blood supply , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli , Cell Line, Tumor , Coculture Techniques , Endothelial Cells/physiology , Humans , Neutrophils/physiology
6.
Cell Rep ; 36(3): 109351, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289360

ABSTRACT

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Subject(s)
Anti-Bacterial Agents/pharmacology , Models, Biological , Neutrophils/pathology , Organoids/microbiology , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/physiology , Animals , Cell Differentiation/drug effects , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Humans , Imaging, Three-Dimensional , Mice, Inbred C57BL , Microbial Viability/drug effects , Movement , Neutrophils/drug effects , Organoids/drug effects , Organoids/ultrastructure , Urinary Bladder/pathology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/growth & development , Uropathogenic Escherichia coli/ultrastructure
7.
EMBO Rep ; 22(6): e52744, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33908688

ABSTRACT

Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokine Release Syndrome , Endothelial Cells , Humans , Lung
8.
Elife ; 92020 11 24.
Article in English | MEDLINE | ID: mdl-33228849

ABSTRACT

We establish a murine lung-on-chip infection model and use time-lapse imaging to reveal the dynamics of host-Mycobacterium tuberculosis interactions at an air-liquid interface with a spatiotemporal resolution unattainable in animal models and to probe the direct role of pulmonary surfactant in early infection. Surfactant deficiency results in rapid and uncontrolled bacterial growth in both macrophages and alveolar epithelial cells. In contrast, under normal surfactant levels, a significant fraction of intracellular bacteria are non-growing. The surfactant-deficient phenotype is rescued by exogenous addition of surfactant replacement formulations, which have no effect on bacterial viability in the absence of host cells. Surfactant partially removes virulence-associated lipids and proteins from the bacterial cell surface. Consistent with this mechanism, the attenuation of bacteria lacking the ESX-1 secretion system is independent of surfactant levels. These findings may partly explain why smokers and elderly persons with compromised surfactant function are at increased risk of developing active tuberculosis.


Tuberculosis is a contagious respiratory disease caused by the bacterium Mycobacterium tuberculosis. Droplets in the air carry these bacteria deep into the lungs, where they cling onto and infect lung cells. Only small droplets, holding one or two bacteria, can reach the right cells, which means that just a couple of bacterial cells can trigger an infection. But people respond differently to the bacteria: some develop active and fatal forms of tuberculosis, while many show no signs of infection. With no effective tuberculosis vaccine for adults, understanding why individuals respond differently to Mycobacterium tuberculosis may help develop treatments. Different responses to Mycobacterium tuberculosis may stem from the earliest stages of infection, but these stages are difficult to study. For one thing, tracking the movements of the few bacterial cells that initiate infection is tricky. For another, studying the molecules, called 'surfactants', that the lungs produce to protect themselves from tuberculosis can prove difficult because these molecules are necessary for the lungs to inflate and deflate normally. Normally, the role of a molecule can be studied by genetically modifying an animal so it does not produce the molecule in question, which provides information as to its potential roles. Unfortunately, due to the role of surfactants in normal breathing, animals lacking them die. Therefore, to reveal the role of some of surfactants in tuberculosis, Thacker et al. used 'lung-on-chip' technology. The 'chip' (a transparent device made of a polymer compatible with biological tissues) is coated with layers of cells and has channels to simulate air and blood flow. To see what effects surfactants have on M. tuberculosis bacteria, Thacker et al. altered the levels of surfactants produced by the cells on the lung-on-chip device. Two types of mouse cells were grown on the chip: lung cells and immune cells. When cells lacked surfactants, bacteria grew rapidly on both lung and immune cells, but when surfactants were present bacteria grew much slower on both cell types, or did not grow at all. Further probing showed that the surfactants pulled out proteins and fats on the surface of M. tuberculosis that help the bacteria to infect their host, highlighting the protective role of surfactants in tuberculosis. These findings lay the foundations for a system to study respiratory infections without using animals. This will allow scientists to study the early stages of Mycobacterium tuberculosis infection, which is crucial for finding ways to manage tuberculosis.


Subject(s)
Alveolar Epithelial Cells/microbiology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Mycobacterium tuberculosis/growth & development , Pulmonary Surfactant-Associated Proteins/metabolism , Tuberculosis, Pulmonary/microbiology , Alveolar Epithelial Cells/metabolism , Animals , Bacterial Load , Bacterial Proteins/genetics , Cells, Cultured , Disease Models, Animal , Female , Host-Pathogen Interactions , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Mice, Transgenic , Microbial Viability , Microscopy, Video , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Pulmonary Surfactant-Associated Proteins/genetics , Time Factors , Time-Lapse Imaging , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , Virulence
9.
Nano Lett ; 15(1): 695-702, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25490120

ABSTRACT

We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior.


Subject(s)
Computer Simulation , Electroosmosis , Glass , Models, Theoretical , Nanopores
10.
Nat Commun ; 5: 3448, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24622339

ABSTRACT

Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles reproducibly held with gaps of 3.3 ± 1 nm. This is confirmed through far field scattering measurements on individual dimers which reveal a significant red shift in the plasmonic resonance peaks, consistent with the high dielectric environment due to the surrounding DNA. We use surface-enhanced Raman scattering (SERS) to demonstrate local field enhancements of several orders of magnitude through detection of a small number of dye molecules as well as short single-stranded DNA oligonucleotides. This demonstrates that DNA origami is a powerful tool for the high-yield creation of SERS-active nanoparticle assemblies with reliable sub-5 nm gap sizes.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Spectrum Analysis, Raman/methods
11.
Nano Lett ; 14(3): 1270-4, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24484535

ABSTRACT

We show DNA origami nanopores that respond to high voltages by a change in conformation on glass nanocapillaries. Our DNA origami nanopores are voltage sensitive as two distinct states are found as a function of the applied voltage. We suggest that the origin of these states is a mechanical distortion of the DNA origami. A simple model predicts the voltage dependence of the structural change. We show that our responsive DNA origami nanopores can be used to lower the frequency of DNA translocation by 1 order of magnitude.


Subject(s)
DNA/chemistry , Electrochemical Techniques , Models, Chemical , Nanopores
12.
Integr Biol (Camb) ; 6(2): 184-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24321999

ABSTRACT

Recent biophysical approaches have provided key insights into the enthalpic and entropic forces that compact the nucleoid in the cell. Our biophysical approach combines two complementary, non-invasive and label-free techniques: a precisely timed steerable optical trap and a high throughput microcapillary Coulter counter. We demonstrate the ability of the latter technique to probe the physical properties and size of many purified nucleoids, at the individual nucleoid level. The DNA-binding protein H-NS is central to the organization of the bacterial genome. Our results show that nucleoids purified from the Δhns strain in the stationary phase expand approximately five fold more than the form observed in WT bacteria. This compaction is consistent with the role played by H-NS in regulating the nucleoid structure and the significant organizational changes that occur as the cell adapts to the stationary phase. We also study the permeability to the flow of ions and find that in the experiment nucleoids behave as solid colloids.


Subject(s)
Bacterial Proteins/physiology , DNA-Binding Proteins/physiology , Escherichia coli/physiology , Genome, Bacterial/physiology , Nucleoproteins/physiology , Microfluidics , Optical Tweezers
14.
ACS Nano ; 7(7): 6024-30, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23734828

ABSTRACT

We combine DNA origami structures with glass nanocapillaries to reversibly form hybrid DNA origami nanopores. Trapping of the DNA origami onto the nanocapillary is proven by imaging fluorescently labeled DNA origami structures and simultaneous ionic current measurements of the trapping events. We then show two applications highlighting the versatility of these DNA origami nanopores. First, by tuning the pore size we can control the folding of dsDNA molecules ("physical control"). Second, we show that the specific introduction of binding sites in the DNA origami nanopore allows selective detection of ssDNA as a function of the DNA sequence ("chemical control").


Subject(s)
DNA/genetics , DNA/isolation & purification , Micromanipulation/methods , Nanopores/ultrastructure , Sequence Analysis, DNA/methods , Base Sequence , Capillary Action , DNA/chemistry , Materials Testing , Molecular Sequence Data
15.
ACS Nano ; 7(5): 4129-34, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23607870

ABSTRACT

Nanopores can be used to detect and analyze single molecules in solution. We have used glass nanopores made by laser-assisted capillary-pulling, as a high-throughput and low cost method, to detect a range of label-free proteins: lysozyme, avidin, IgG, ß-lactoglobulin, ovalbumin, bovine serum albumin (BSA), and ß-galactosidase in solution. Furthermore, we show for the first time solid state nanopore measurements of mammalian prion protein, which in its abnormal form is associated with transmissible spongiform encephalopathies. Our approach provides a basis for protein characterization and the study of protein conformational diseases by nanopore detection.


Subject(s)
Glass/chemistry , Nanopores , Proteins/analysis , Animals , Cattle , Humans , Molecular Weight , Protein Conformation , Proteins/chemistry , Signal-To-Noise Ratio
16.
Lab Chip ; 13(10): 1859-62, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23563625

ABSTRACT

We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.


Subject(s)
Glass/chemistry , Nanopores , DNA/analysis , DNA/chemistry , Electric Conductivity , Electrodes , Ions/chemistry , Microfluidic Analytical Techniques/instrumentation , Nanostructures/chemistry
17.
Analyst ; 138(1): 104-6, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23148206

ABSTRACT

We report a simple and efficient way to accomplish the chemical modification of glass nanopores by means of lipid self-assembly. Lipid coating improves the success rate of these glass nanopores as biosensors to detect λ-DNA.


Subject(s)
Biosensing Techniques/methods , DNA, Viral/analysis , Nanopores , Phosphatidylcholines/chemistry , Bacteriophage lambda , Glass/chemistry
18.
Appl Phys Lett ; 101(22): 223704, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23284180

ABSTRACT

We demonstrate simultaneous measurements of DNA translocation into glass nanopores using ionic current detection and fluorescent imaging. We verify the correspondence between the passage of a single DNA molecule through the nanopore and the accompanying characteristic ionic current blockage. By tracking the motion of individual DNA molecules in the nanocapillary perpendicular to the optical axis and using a model, we can extract an effective mobility constant for DNA in our geometry under high electric fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...