Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Nucl Cardiol ; 36: 101870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685398

ABSTRACT

Despite decades of research, the heart-brain axis continues to challenge investigators seeking to unravel its complex pathobiology. Strong epidemiologic evidence supports a link by which insult or injury to one of the organs increases the risk of pathology in the other. The putative pathways have important differences between sexes and include alterations in autonomic function, metabolism, inflammation, and neurohormonal mechanisms that participate in crosstalk between the heart and brain and contribute to vascular changes, the development of shared risk factors, and oxidative stress. Recently, given its unique ability to characterize biological processes in multiple tissues simultaneously, molecular imaging has yielded important insights into the interplay of these organ systems under conditions of stress and disease. Yet, additional research is needed to probe further into the mechanisms underlying the heart-brain axis and to evaluate the impact of targeted interventions.


Subject(s)
Brain , Heart , Molecular Imaging , Humans , Brain/diagnostic imaging , Heart/diagnostic imaging , Molecular Imaging/methods , Cardiovascular Diseases/diagnostic imaging , Oxidative Stress
2.
J Nucl Med ; 65(2): 287-293, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38176717

ABSTRACT

The immune-fibrosis axis plays a critical role in cardiac remodeling after acute myocardial infarction. Imaging approaches to monitor temporal inflammation and fibroblast activation in mice have seen wide application in recent years. However, the repeatability of quantitative measurements remains challenging, particularly across multiple imaging centers. We aimed to determine reproducibility of quantitative inflammation and fibroblast activation images acquired at 2 facilities after myocardial infarction in mice. Methods: Mice underwent coronary artery ligation and sequential imaging with 68Ga-DOTA-ECL1i to assess chemokine receptor type 2 expression at 3 d after myocardial infarction and 68Ga-FAPI-46 to assess fibroblast activation protein expression at 7 d after myocardial infarction. Images were acquired at 1 center using either a local or a consensus protocol developed with the second center; the protocols differed in the duration of isoflurane anesthesia and the injected tracer dose. A second group of animals were scanned at the second site using the consensus protocol. Image analyses performed by each site and just by 1 site were also compared. Results: The uptake of 68Ga-DOTA-ECL1i in the infarct territory tended to be higher when the consensus protocol was used (P = 0.03). No difference was observed between protocol acquisitions for 68Ga-FAPI-46. Compared with the local protocol, the consensus protocol decreased variability between individual animals. When a matched consensus protocol was used, the 68Ga-DOTA-ECL1i infarct territory percentage injected dose per gram of tissue was higher on images acquired at site B than on those acquired at site A (P = 0.006). When normalized to body weight as SUV, this difference was mitigated. Both the percentage injected dose per gram of tissue and the SUV were comparable between sites for 68Ga-FAPI-46. Image analyses at the sites differed significantly, but this difference was mitigated when all images were analyzed at site A. Conclusion: The application of a standardized acquisition protocol may lower variability within datasets and facilitate comparison of molecular radiotracer distribution between preclinical imaging centers. Like clinical studies, multicenter preclinical studies should use centralized core-based image analysis to maximize reproducibility across sites.


Subject(s)
Gallium Radioisotopes , Myocardial Infarction , Mice , Animals , Reproducibility of Results , Myocardial Infarction/diagnostic imaging , Positron-Emission Tomography/methods , Inflammation , Positron Emission Tomography Computed Tomography/methods
3.
J Nucl Med ; 64(Suppl 2): 39S-48S, 2023 11.
Article in English | MEDLINE | ID: mdl-37918845

ABSTRACT

Growing evidence implicates the immune system as a critical mediator of cardiovascular disease progression and a viable therapeutic target. Increased inflammatory cell activity is seen in the full spectrum of disorders from early-stage atherosclerosis through myocardial infarction, cardiomyopathy, and chronic heart failure. Although therapeutic strategies to modulate inflammation have shown promise in preclinical animal models, efficacy in patients has been modest owing in part to the variable severity of inflammation across individuals. The diverse leukocyte subpopulations involved in different aspects of heart disease pose a challenge to effective therapy, wherein adverse and beneficial aspects of inflammation require appropriate balance. Noninvasive molecular imaging enables tissue-level interrogation of inflammatory cells in the heart and vasculature to provide mechanistic and temporal insights into disease progression. Although clinical imaging has relied on 18F-FDG as a nonselective and crude marker of inflammatory cell activity, new imaging probes targeting cell surface markers of different leukocyte subpopulations present the opportunity to visualize and quantify distinct phases of cardiac and vessel wall inflammation. Similarly, therapies are evolving to more effectively isolate adverse from beneficial cell populations. This parallel development of immunocardiology and molecular imaging provides the opportunity to refine treatments using imaging guidance, building toward mechanism-based precision medicine. Here, we discuss progress in molecular imaging of immune cells in cardiology from use of 18F-FDG in the past to the present expansion of the radiotracer arsenal and then to a future theranostic paradigm of tracer-therapy compound pairs with shared targets. We then highlight the critical experiments required to advance the field from preclinical concept to clinical reality.


Subject(s)
Fluorodeoxyglucose F18 , Myocardial Infarction , Animals , Humans , Fluorodeoxyglucose F18/therapeutic use , Inflammation/diagnostic imaging , Heart , Molecular Imaging
4.
J Nucl Med ; 64(8): 1279-1286, 2023 08.
Article in English | MEDLINE | ID: mdl-37290793

ABSTRACT

Using multimodal imaging, we investigated the extent and functional correlates of myocardial fibroblast activation in patients with aortic stenosis (AS) scheduled for transcatheter aortic valve replacement (TAVR). AS may cause myocardial fibrosis, which is associated with disease progression and may limit response to TAVR. Novel radiopharmaceuticals identify upregulation of fibroblast activation protein (FAP) as a cellular substrate of cardiac profibrotic activity. Methods: Twenty-three AS patients underwent 68Ga-FAP inhibitor 46 (68Ga-FAPI) PET, cardiac MRI, and echocardiography within 1-3 d before TAVR. Imaging parameters were correlated and then were integrated with clinical and blood biomarkers. Control cohorts of subjects without a history of cardiac disease and with (n = 5) and without (n = 9) arterial hypertension were compared with matched AS subgroups. Results: Myocardial FAP volume varied significantly among AS subjects (range, 1.54-138 cm3, mean ± SD, 42.2 ± 35.6 cm3) and was significantly higher than in controls with (7.42 ± 8.56 cm3, P = 0.007) and without (2.90 ± 6.67 cm3; P < 0.001) hypertension. FAP volume correlated with N-terminal prohormone of brain natriuretic peptide (r = 0.58, P = 0.005), left ventricular ejection fraction (r = -0.58, P = 0.02), mass (r = 0.47, P = 0.03), and global longitudinal strain (r = 0.55, P = 0.01) but not with cardiac MRI T1 (spin-lattice relaxation time) and extracellular volume (P = not statistically significant). In-hospital improvement in left ventricular ejection fraction after TAVR correlated with pre-TAVR FAP volume (r = 0.440, P = 0.035), N-terminal prohormone of brain natriuretic peptide, and strain but not with other imaging parameters. Conclusion: FAP-targeted PET identifies varying degrees of left ventricular fibroblast activation in TAVR candidates with advanced AS. 68Ga-FAPI signal does not match other imaging parameters, generating the hypothesis that it may become useful as a tool for personalized selection of optimal TAVR candidates.


Subject(s)
Aortic Valve Stenosis , Hypertension , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Pilot Projects , Stroke Volume/physiology , Ventricular Function, Left/physiology , Gallium Radioisotopes , Natriuretic Peptide, Brain , Treatment Outcome , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Hypertension/surgery , Molecular Imaging , Fibroblasts , Aortic Valve/diagnostic imaging , Aortic Valve/surgery
5.
Curr Cardiol Rep ; 25(6): 515-523, 2023 06.
Article in English | MEDLINE | ID: mdl-37126137

ABSTRACT

PURPOSE OF REVIEW: Cardiovascular disease features adverse fibrotic processes within the myocardium, leading to contractile dysfunction. Activated cardiac fibroblasts play a pivotal role in the remodeling and progression of heart failure, but conventional diagnostics struggle to identify early changes in cardiac fibroblast dynamics. Emerging imaging methods visualize fibroblast activation protein (FAP) as a marker of activated fibroblasts, enabling non-invasive quantitative measurement of early cardiac remodeling. RECENT FINDINGS: Retrospective analysis of oncology patient cohorts has identified cardiac uptake of FAP radioligands in response to various cardiovascular conditions. Small scale studies in dedicated cardiac populations have revealed FAP upregulation in injured myocardium, wherein the area of upregulation predicts subsequent ventricle dysfunction. Recent studies have demonstrated that silencing of FAP-expressing fibroblasts can reverse cardiac fibrosis in disease models. The parallel growth of FAP-targeted imaging and therapy provides the opportunity for imaging-based monitoring and refinement of treatments targeting cardiac fibroblast activation.


Subject(s)
Myocardium , Ventricular Remodeling , Humans , Retrospective Studies , Myocardium/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Biomarkers/metabolism
6.
Circ Cardiovasc Imaging ; 16(1): e014067, 2023 01.
Article in English | MEDLINE | ID: mdl-36649445

ABSTRACT

Inflammation is a key mechanistic contributor to the progression of cardiovascular disease, from atherosclerosis through ischemic injury and overt heart failure. Recent evidence has identified specific roles of immune cell subpopulations in cardiac pathogenesis that diverges between individual patients. Nuclear imaging approaches facilitate noninvasive and serial quantification of inflammation severity, offering the opportunity to predict eventual outcome, stratify patient risk, and guide novel targeted molecular therapies against specific leukocyte subpopulations. Here, we will discuss the established and emerging nuclear imaging methods to label and track exogenous and endogenous immune cells, with a particular focus on clinical situations in which targeted molecular inflammation imaging would be advantageous. The expanding options for imaging inflammation provide the foundation to bridge between molecular imaging and individual therapy.


Subject(s)
Cardiovascular Diseases , Positron-Emission Tomography , Humans , Precision Medicine , Inflammation , Molecular Imaging
7.
Basic Res Cardiol ; 117(1): 52, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36279013

ABSTRACT

Ischemic stroke imparts elevated risk of heart failure though the underlying mechanisms remain poorly described. We aimed to characterize the influence of cerebral ischemic injury on cardiac function using multimodality molecular imaging to investigate brain and cardiac morphology and tissue inflammation in two mouse models of variable stroke severity. Transient middle cerebral artery occlusion (MCAo) generated extensive stroke damage (56.31 ± 40.39 mm3). Positron emission tomography imaging of inflammation targeting the mitochondrial translocator protein (TSPO) revealed localized neuroinflammation at 7 days after stroke compared to sham (3.8 ± 0.8 vs 2.6 ± 0.7 %ID/g max, p < 0.001). By contrast, parenchyma topical application of vasoconstrictor endothelin-1 did not generate significant stroke damage or neuroinflammatory cell activity. MCAo evoked a modest reduction in left ventricle ejection fraction at both 1 weeks and 3 weeks after stroke (LVEF at 3 weeks: 54.3 ± 5.7 vs 66.1 ± 3.5%, p < 0.001). This contractile impairment was paralleled by elevated cardiac TSPO PET signal compared to sham (8.6 ± 2.4 vs 5.8 ± 0.7%ID/g, p = 0.022), but was independent of leukocyte infiltration defined by flow cytometry. Stroke size correlated with severity of cardiac dysfunction (r = 0.590, p = 0.008). Statistical parametric mapping identified a direct association between neuroinflammation at 7 days in a cluster of voxels including the insular cortex and reduced ejection fraction (ρ = - 0.396, p = 0.027). Suppression of microglia led to lower TSPO signal at 7 days which correlated with spared late cardiac function after MCAo (r = - 0.759, p = 0.029). Regional neuroinflammation early after cerebral ischemia influences subsequent cardiac dysfunction. Total body TSPO PET enables monitoring of neuroinflammation, providing insights into brain-heart inter-organ communication and may guide therapeutic intervention to spare cardiac function post-stroke.


Subject(s)
Brain Ischemia , Heart Diseases , Stroke , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , Brain Ischemia/metabolism , Endothelin-1/metabolism , Heart Diseases/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/diagnostic imaging , Inflammation/metabolism , Molecular Imaging/methods , Positron-Emission Tomography/methods , Stroke/metabolism , Vasoconstrictor Agents
9.
Basic Res Cardiol ; 117(1): 14, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35275268

ABSTRACT

Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Animals , Immunity , Mice , Myocardial Infarction/pathology , Myocardium/pathology , Positron-Emission Tomography/methods , Ventricular Remodeling/physiology
10.
J Nucl Med ; 63(9): 1415-1423, 2022 09.
Article in English | MEDLINE | ID: mdl-35210301

ABSTRACT

After acute myocardial infarction (AMI), fibroblast activation protein (FAP) upregulation exceeds the infarct region. We sought further insights into the physiologic relevance by correlating FAP-targeted PET with tissue characteristics from cardiac MRI (CMR) and functional outcome. Methods: Thirty-five patients underwent CMR, perfusion SPECT, and 68Ga-FAP inhibitor (FAPI)-46 PET/CT within 11 d after AMI. Infarct size was determined from SPECT by comparison to a reference database. For PET, regional SUVs and isocontour volumes of interest determined the extent of cardiac FAP upregulation (FAP volume). CMR yielded functional parameters, area of injury (late gadolinium enhancement [LGE]) and T1/T2 mapping. Follow-up was available from echocardiography or CMR after 139.5 d (interquartile range, 80.5-188.25 d) (n = 14). Results: The area of FAP upregulation was significantly larger than the SPECT perfusion defect size (58% ± 15% vs. 23% ± 17%, P < 0.001) and infarct area by LGE (28% ± 11%, P < 0.001). FAP volume significantly correlated with CMR parameters at baseline (all P < 0.001): infarct area (r = 0.58), left ventricle (LV) mass (r = 0.69), end-systolic volume (r = 0.62), and end-diastolic volume (r = 0.57). Segmental analysis revealed FAP upregulation in 308 of 496 myocardial segments (62%). Significant LGE was found in only 56% of FAP-positive segments, elevated T1 in 74%, and elevated T2 in 68%. Fourteen percent (44/308) of FAP-positive segments exhibited neither prolonged T1 or T2 nor significant LGE. Of note, FAP volume correlated only weakly with simultaneously measured LV ejection fraction at baseline (r = -0.32, P = 0.07), whereas there was a significant inverse correlation with LV ejection fraction obtained at later follow-up (r = -0.58, P = 0.007). Conclusion: Early after AMI and reperfusion therapy, activation of fibroblasts markedly exceeds the hypoperfused infarct region and involves noninfarcted myocardium. The 68Ga-FAPI PET signal does not match regional myocardial tissue characteristics as defined by CMR but is predictive of the evolution of ventricular dysfunction. FAP-targeted imaging may provide a novel biomarker of LV remodeling that is complementary to existing techniques.


Subject(s)
Magnetic Resonance Imaging, Cine , Myocardial Infarction , Contrast Media , Fibroblasts , Gadolinium , Gallium Radioisotopes , Humans , Magnetic Resonance Imaging, Cine/methods , Myocardium , Positron Emission Tomography Computed Tomography , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left
14.
Basic Res Cardiol ; 116(1): 61, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34669013

ABSTRACT

Systemic effects of advanced cancer impact on the heart leading to cardiac atrophy and functional impairment. Using a murine melanoma cancer model (B16F10 melanoma cells stably transduced with a Ganciclovir (GCV)-inducible suicide gene), the present study analysed the recovery potential of cancer-induced cardiomyopathy with or without use of doxorubicin (Dox). After Dox-free tumor elimination and recovery for 70 ± 5 days, cancer-induced morphologic, functional, metabolic and molecular changes were largely reversible in mice previously bearing tumors. Moreover, grip strength and cardiac response to angiotensin II-induced high blood pressure were comparable with healthy control mice. In turn, addition of Dox (12 mg/kg BW) to melanoma-bearing mice reduced survival in the acute phase compared to GCV-alone induced recovery, while long-term effects on cardiac morphologic and functional recovery were similar. However, Dox treatment was associated with permanent changes in the cardiac gene expression pattern, especially the circadian rhythm pathway associated with the DNA damage repair system. Thus, the heart can recover from cancer-induced damage after chemotherapy-free tumor elimination. In contrast, treatment with the cardiotoxic drug Dox induces, besides well-known adverse acute effects, long-term subclinical changes in the heart, especially of circadian clock genes. Since the circadian clock is known to impact on cardiac repair mechanisms, these changes may render the heart more sensitive to additional stress during lifetime, which, at least in part, could contribute to late cardiac toxicity.


Subject(s)
Anthracyclines , Neoplasms , Animals , Anthracyclines/therapeutic use , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/toxicity , Cardiotoxicity , Doxorubicin/therapeutic use , Mice , Neoplasms/drug therapy
15.
Theranostics ; 11(16): 7755-7766, 2021.
Article in English | MEDLINE | ID: mdl-34335962

ABSTRACT

Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.


Subject(s)
Endopeptidases/metabolism , Gallium Radioisotopes/pharmacology , Membrane Proteins/metabolism , Positron-Emission Tomography/methods , Animals , Autoradiography/methods , Cell Line, Tumor , Endopeptidases/physiology , Fibroblasts/metabolism , Fibrosis/diagnostic imaging , Gallium Radioisotopes/metabolism , Humans , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Molecular Imaging/methods , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Tissue Distribution/physiology , Tomography, X-Ray Computed/methods
16.
Theranostics ; 11(16): 7984-7994, 2021.
Article in English | MEDLINE | ID: mdl-34335975

ABSTRACT

Rationale: Acute myocardial infarction (MI) triggers a systemic inflammatory response including crosstalk along the heart-kidney axis. We employed radionuclide-based inflammation-targeted whole-body molecular imaging to identify potential cardio-renal crosstalk after MI in a translational setup. Methods: Serial whole-body positron emission tomography (PET) with the specific CXCR4 ligand 68Ga-Pentixafor was performed after MI in mice. Tracer retention in kidneys and heart was compared to hematopoietic organs to evaluate systemic inflammation, validated by ex vivo analysis and correlated with progressive contractile dysfunction. Additionally, 96 patients underwent 68Ga-Pentixafor PET within the first week after MI, for systems-based image analysis and to determine prognostic value for adverse renal outcome. Results: In mice, transient myocardial CXCR4 upregulation occurred early after MI. Cardiac and renal PET signal directly correlated over the time course (r = 0.62, p < 0.0001), suggesting an inflammatory link between organs. Ex-vivo autoradiography (r = 0.9, p < 0.01) and CD68 immunostaining indicated signal localization to inflammatory cell content. Renal signal at 7d was inversely proportional to left ventricular ejection fraction at 6 weeks after MI (r = -0.79, p < 0.01). In patients, renal CXCR4 signal also correlated with signal from infarct (r = 0.25, p < 0.05) and remote myocardium (r = 0.39, p < 0.0001). Glomerular filtration rate (GFR) was available in 48/96 (50%) during follow-up. Worsening of renal function (GFR loss >5 mL/min/1.73m2), occurred a mean 80.5 days after MI in 16/48 (33.3%). Kaplan-Meier analysis revealed adverse renal outcome for patients with elevated remote myocardial CXCR4 signal (p < 0.05). Multivariate Cox analysis confirmed an independent predictive value (relative to baseline GFR, LVEF, infarct size; HR, 5.27). Conclusion: Systems-based CXCR4-targeted molecular imaging identifies inflammatory crosstalk along the cardio-renal axis early after MI.


Subject(s)
Heart/physiopathology , Kidney/physiopathology , Myocardial Infarction/physiopathology , Animals , Coordination Complexes/pharmacology , Humans , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Molecular Imaging/methods , Myocardial Infarction/metabolism , Myocardium/metabolism , Peptides, Cyclic/pharmacology , Positron-Emission Tomography/methods , Receptors, CXCR4/metabolism , Stroke Volume , Ventricular Function, Left , Ventricular Remodeling/physiology , Whole Body Imaging/methods
17.
Curr Cardiol Rep ; 23(8): 96, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34196821

ABSTRACT

PURPOSE OF REVIEW: Current therapeutic strategies to mitigate heart failure progression after myocardial infarction involve support of endogenous repair through molecular targets. The capacity for repair varies greatly between individuals. In this review, we will assess how cardiac PET/CT enables precise characterization of early pathogenetic processes which govern ventricle remodeling and progression to heart failure. RECENT FINDINGS: Inflammation in the first days after myocardial infarction predicts subsequent functional decline and can influence therapy decisions. The expansion of anti-inflammatory approaches to improve outcomes after myocardial infarction may benefit from noninvasive characterization using imaging. Novel probes also allow visualization of fibroblast transdifferentiation and activation, as a precursor to ventricle remodeling. The expanding arsenal of molecular imaging agents in parallel with new treatment options provides opportunity to harmonize diagnostic imaging with precision therapy.


Subject(s)
Myocardial Infarction , Positron Emission Tomography Computed Tomography , Heart , Humans , Molecular Imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/therapy , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...