Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Primatol (Basel) ; 94(4-6): 225-247, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38593406

ABSTRACT

The juvenile mandible is important in the investigation of ontogenetic and evolutionary changes among early hominins. We revisit the mandibular symphysis in juvenile specimens of Australopithecus africanus and Paranthropus robustus with two main contributions. First, we employ, for the first time, methods of computational anatomy to model complex symphyseal shape differences. Second, we present new fossil evidence from Kromdraai to improve our knowledge of symphyseal morphology. We describe differences between shapes by landmark-free diffeomorphism needed to align them. We assess which features of the mandibular symphysis best discriminate the juvenile symphysis in these fossil species, relative to the intraspecific variation observed among modern humans. Our approach eliminates potential methodological inconsistencies with traditional approaches (i.e., the need for homologous anatomical landmarks, assumption of linearity). By enabling detailed comparisons of complex shapes in juvenile mandibles, our proposed approach offers new perspectives for more detailed comparisons among Australopithecus, Paranthropus and early Homo.


Subject(s)
Hominidae , Humans , Animals , Hominidae/anatomy & histology , Biological Evolution , Mandible/anatomy & histology , Fossils , Knowledge
2.
J Anat ; 232(2): 296-303, 2018 02.
Article in English | MEDLINE | ID: mdl-29148040

ABSTRACT

Assessment of global endocranial morphology and regional neuroanatomical changes in early hominins is critical for the reconstruction of evolutionary trajectories of cerebral regions in the human lineage. Early evidence of cortical reorganization in specific local areas (e.g. visual cortex, inferior frontal gyrus) is perceptible in the non-human South African hominin fossil record. However, to date, little information is available regarding potential global changes in the early hominin brain. The introduction of non-invasive imaging techniques opens up new perspectives for the study of hominin brain evolution. In this context, our primary aim in this study is to explore the organization of the Australopithecus africanus endocasts, and highlight the nature and extent of the differences distinguishing A. africanus from the extant hominids at both local and global scales. By means of X-ray-based imaging techniques, we investigate two A. africanus specimens from Sterkfontein Member 4, catalogued as Sts 5 and Sts 60, respectively a complete cranium and a partial cranial endocast. Endocrania were virtually reconstructed and compared by using a landmark-free registration method based on smooth and invertible surface deformation. Both local and global information provided by our deformation-based approach are used to perform statistical analyses and topological mapping of inter-specific variation. Statistical analyses indicate that the endocranial shape of Sts 5 and Sts 60 approximates the Pan condition. Furthermore, our study reveals substantial differences with respect to the extant human condition, particularly in the parietal regions. Compared with Pan, the endocranial shape of the fossil specimens differs in the anterior part of the frontal gyri.


Subject(s)
Biological Evolution , Hominidae/anatomy & histology , Skull/anatomy & histology , Animals , Brain/anatomy & histology , Female , Fossils , Humans , Imaging, Three-Dimensional , Male , Tomography, X-Ray Computed
3.
Am J Phys Anthropol ; 163(4): 806-815, 2017 08.
Article in English | MEDLINE | ID: mdl-28573649

ABSTRACT

OBJECTIVES: The aim of this study is to compare the degree and patterning of inter- and intra-individual metameric variation in South African australopiths, early Homo and modern humans. Metameric variation likely reflects developmental and taxonomical issues, and could also be used to infer ecological and functional adaptations. However, its patterning along the early hominin postcanine dentition, particularly among South African fossil hominins, remains unexplored. MATERIALS AND METHODS: Using microfocus X-ray computed tomography (µXCT) and geometric morphometric tools, we studied the enamel-dentine junction (EDJ) morphology and we investigated the intra- and inter-individual EDJ metameric variation among eight australopiths and two early Homo specimens from South Africa, as well as 32 modern humans. RESULTS: Along post-canine dentition, shape changes between metameres represented by relative positions and height of dentine horns, outlines of the EDJ occlusal table are reported in modern and fossil taxa. Comparisons of EDJ mean shapes and multivariate analyses reveal substantial variation in the direction and magnitude of metameric shape changes among taxa, but some common trends can be found. In modern humans, both the direction and magnitude of metameric shape change show increased variability in M2 -M3 compared to M1 -M2 . Fossil specimens are clustered together showing similar magnitudes of shape change. Along M2 -M3 , the lengths of their metameric vectors are not as variable as those of modern humans, but they display considerable variability in the direction of shape change. CONCLUSION: The distalward increase of metameric variation along the modern human molar row is consistent with the odontogenetic models of molar row structure (inhibitory cascade model). Though much remains to be tested, the variable trends and magnitudes in metamerism in fossil hominins reported here, together with differences in the scale of shape change between modern humans and fossil hominins may provide valuable information regarding functional morphology and developmental processes in fossil species.


Subject(s)
Dental Enamel/anatomy & histology , Dentin/anatomy & histology , Fossils , Hominidae/anatomy & histology , Tooth/anatomy & histology , Animals , Humans , Paleodontology , Principal Component Analysis , X-Ray Microtomography
4.
J Hum Evol ; 101: 65-78, 2016 12.
Article in English | MEDLINE | ID: mdl-27886811

ABSTRACT

Despite the abundance of well-preserved crania and natural endocasts in the South African Plio-Pleistocene cercopithecoid record, which provide direct information relevant to the evolution of their endocranial characteristics, few studies have attempted to characterize patterns of external brain morphology in this highly successful primate Superfamily. The availability of non-destructive penetrating radiation imaging systems, together with recently developed computer-based analytical tools, allow for high resolution virtual imaging and modeling of the endocranial casts and thus disclose new perspectives in comparative paleoneurology. Here, we use X-ray microtomographic-based 3D virtual imaging and quantitative analyses to investigate the endocranial organization of 14 cercopithecoid specimens from the South African sites of Makapansgat, Sterkfontein, Swartkrans, and Taung. We present the first detailed comparative description of the external neuroanatomies that characterize these Plio-Pleistocene primates. Along with reconstruction of endocranial volumes, we combine a semi-automatic technique for extracting the neocortical sulcal pattern together with a landmark-free surface deformation method to investigate topographic differences in morphostructural organization. Besides providing and comparing for the first time endocranial volume estimates of extinct Plio-Pleistocene South African cercopithecoid taxa, we report additional information regarding the variation in the sulcal pattern of Theropithecus oswaldi subspecies, and notably of the central sulcus, and the neuroanatomical condition of the colobine taxon Cercopithecoides williamsi, suggested to be similar for some aspects to the papionin pattern, and discuss potential phylogenetic and taxonomic implications. Further research in virtual paleoneurology, applied to specimens from a wider geographic area, is needed to clarify the polarity, intensity, and timing of cortical surface evolution in cercopithecoid lineages.


Subject(s)
Brain/anatomy & histology , Cercopithecus/anatomy & histology , Fossils/anatomy & histology , Skull/anatomy & histology , Theropithecus/anatomy & histology , Africa, Southern , Animals , Biological Evolution , Cercopithecus/classification , Imaging, Three-Dimensional , Theropithecus/classification , X-Ray Microtomography
5.
J Hum Evol ; 95: 104-20, 2016 06.
Article in English | MEDLINE | ID: mdl-27260177

ABSTRACT

Despite the abundance of cercopithecoids in the fossil record, especially in South Africa, and the recent development of morphometric approaches, uncertainties regarding the taxonomic identification of isolated cranio-dental specimens remain. Because cercopithecoids, nearly always found in stratigraphic association with hominin remains in Plio-Pleistocene deposits, are considered as sensitive ecological and chronological biomarkers, a significant effort should be made to clarify their palaeobiodiversity by assessing additional reliable morphological diagnostic criteria. Here we test the relevance of both molar crown internal structure and bony labyrinth morphology for discrimination of fossil cercopithecoid species. We use microtomographic-based 3D virtual imaging and quantitative analyses to investigate tooth endostructural organization and inner ear shape in 29 craniodental specimens from the South African sites of Kromdraai, Makapansgat, Sterkfontein and Swartkrans and provide the first detailed description of the internal structural condition characterizing this Plio-Pleistocene primate assemblage. Our preliminary results show that enamel-dentine junction morphology could be informative for discriminating highly autapomorphic taxa such as Theropithecus, while semicircular canal shape is tentatively proposed as an efficient criterion for diagnosing Dinopithecus ingens. Further research in virtual paleoprimatology may contribute to the identification of unassigned isolated fossil remains and shed new light on the internal craniodental morphology of extinct primate taxa.


Subject(s)
Cercopithecinae/anatomy & histology , Fossils/anatomy & histology , Molar/anatomy & histology , Semicircular Canals/anatomy & histology , Animals , Paleodontology , South Africa
6.
J Hum Evol ; 96: 82-96, 2016 07.
Article in English | MEDLINE | ID: mdl-27343773

ABSTRACT

The appearance of the earliest members of the genus Homo in South Africa represents a key event in human evolution. Although enamel thickness and enamel dentine junction (EDJ) morphology preserve important information about hominin systematics and dietary adaptation, these features have not been sufficiently studied with regard to early Homo. We used micro-CT to compare enamel thickness and EDJ morphology among the mandibular postcanine dentitions of South African early hominins (N = 30) and extant Homo sapiens (N = 26), with special reference to early members of the genus Homo. We found that South African early Homo shows a similar enamel thickness distribution pattern to modern humans, although three-dimensional average and relative enamel thicknesses do not distinguish australopiths, early Homo, and modern humans particularly well. Based on enamel thickness distributions, our study suggests that a dietary shift occurred between australopiths and the origin of the Homo lineage. We also observed that South African early Homo postcanine EDJ combined primitive traits seen in australopith molars with derived features observed in modern human premolars. Our results confirm that some dental morphological patterns in later Homo actually occurred early in the Homo lineage, and highlight the taxonomic value of premolar EDJ morphology in hominin species.


Subject(s)
Bicuspid/anatomy & histology , Fossils/anatomy & histology , Hominidae/anatomy & histology , Molar/anatomy & histology , Animals , Biological Evolution , Dental Enamel/anatomy & histology , Dentin/anatomy & histology , Humans , South Africa , X-Ray Microtomography
7.
J Hum Evol ; 65(4): 447-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24012253

ABSTRACT

The site of Kromdraai B (KB) (Gauteng, South Africa) has yielded a minimum number of nine hominins including the type specimen of Paranthropus robustus (TM 1517), the only partial skeleton of this species known to date. Four of these individuals are juveniles, one is a subadult and four are young adults. They all occur with a macrofaunal assemblage spread across the succession of at least two time periods that occurred in South Africa approximately two million years ago. Here we report on an additional, newly discovered petrous temporal bone of a juvenile hominin, KB 6067. Following the description of KB 6067, we assess its affinities with Australopithecus africanus, P. robustus and early Homo. We discuss its developmental age and consider its association with other juvenile hominin specimens found at Kromdraai B. KB 6067 probably did not reach five years of age and in bony labyrinth morphology it is close to P. robustus, but also to StW 53, a specimen with uncertain affinities. However, its cochlear and oval window size are closer to some hominin specimens from Sterkfontein Member 4 and if KB 6067 is indeed P. robustus this may represent a condition that is evolutionarily less derived than that shown by TM 1517 and other conspecifics sampled so far. The ongoing fieldwork at KB, as well as the petrography and geochemistry of its deposits, will help to determine when the various KB breccias accumulated, and how time may be an important factor underlying the variation seen among KB 6067 and the rest of the fossil hominin sample from this site.


Subject(s)
Biological Evolution , Hominidae/anatomy & histology , Petrous Bone/anatomy & histology , Animals , Hominidae/classification , Phylogeny , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...