Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Health ; : 1-6, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595622

ABSTRACT

Objectives: During the early COVID-19 pandemic, college students had to switch to an online learning and online communication environment facing the chances of information overload, misinformation or conflicting information about COVID-19. This study aims to assess the communication needs that have arisen among college students to shed light on the development of a health communication campaign tailored toward college students. Methods: A series of 10 focus group discussions were conducted with 38 total participants. Each group has 2-6 undergraduate or graduate student participants. Nvivo was used to analyze the transcripts. Results: The students reported that they received conflicting information or misinformation. They requested messages with language that was easy to understand with infographics while being culturally appropriate. They advocated for regular and concise email updates from campus leadership. Most participants also preferred COVID-19 control and prevention information on social media. Conclusion: This study revealed the current status and the needs for health information about COVID-19 prevention and control among college students.

2.
J Am Coll Health ; 71(8): 2347-2355, 2023 11.
Article in English | MEDLINE | ID: mdl-34449287

ABSTRACT

OBJECTIVE: The purpose of this study was to measure college students' coping strategies and change of lifestyle during the COVID-19 pandemic. PARTICIPANTS: Students from the State University in California were recruited during July 2020. METHODS: A total of 11 focus group meetings were conducted. RESULTS: Students' coping strategies were analyzed aligning with the Transactional model of stress and coping - primary appraisal, secondary appraisal and coping efforts, and meaning-based coping. Their physical activity patterns were dramatically changed. They used various ways of managing stress and tried to overcome the unexpected situation caused by COVID-19. CONCLUSIONS: This study mainly analyzed the three constructs of the transactional model: primary appraisal, secondary appraisal and coping efforts, and meaning-based coping. It is expected that the future study will focus on the last construct, coping outcomes/adaptation after the COVID-19 pandemic to measure the association between coping strategies and their outcomes.


Subject(s)
COVID-19 , Humans , Pandemics , Students , Universities , Adaptation, Psychological
3.
Nat Struct Mol Biol ; 29(3): 239-249, 2022 03.
Article in English | MEDLINE | ID: mdl-35301492

ABSTRACT

Although thousands of long non-coding RNAs (lncRNAs) are encoded in mammalian genomes, their mechanisms of action are poorly understood, in part because they are often expressed at lower levels than their proposed targets. One such lncRNA is Xist, which mediates chromosome-wide gene silencing on one of the two X chromosomes (X) to achieve gene expression balance between males and females. How a limited number of Xist molecules can mediate robust silencing of a much larger number of target genes while maintaining specificity exclusively to genes on the X within each cell is not well understood. Here, we show that Xist drives non-stoichiometric recruitment of the essential silencing protein SHARP (also known as SPEN) to amplify its abundance across the inactive X, including at regions not directly occupied by Xist. This amplification is achieved through concentration-dependent homotypic assemblies of SHARP on the X and is required for chromosome-wide silencing. Expression of Xist at higher levels leads to increased localization at autosomal regions, demonstrating that low levels of Xist are critical for ensuring its specificity to the X. We show that Xist (through SHARP) acts to suppress production of its own RNA which may act to constrain overall RNA levels and restrict its ability to spread beyond the X. Together, our results demonstrate a spatial amplification mechanism that allows Xist to achieve two essential but countervailing regulatory objectives: chromosome-wide gene silencing and specificity to the X. This suggests a more general mechanism by which other low-abundance lncRNAs could balance specificity to, and robust control of, their regulatory targets.


Subject(s)
RNA, Long Noncoding , Animals , Female , Gene Silencing , Male , Mammals/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , X Chromosome/metabolism , X Chromosome Inactivation
4.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34739832

ABSTRACT

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Subject(s)
Cell Nucleus/metabolism , RNA/metabolism , Animals , Cell Nucleus/drug effects , Chromobox Protein Homolog 5/metabolism , Chromosomes/metabolism , DNA/metabolism , DNA, Satellite/metabolism , DNA-Binding Proteins/metabolism , Dactinomycin/pharmacology , Female , Genome , HEK293 Cells , Heterochromatin/metabolism , Humans , Mice , Models, Biological , Multigene Family , RNA Polymerase II/metabolism , RNA Processing, Post-Transcriptional/drug effects , RNA Processing, Post-Transcriptional/genetics , RNA Splicing/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA-Binding Proteins/metabolism , Transcription, Genetic/drug effects
5.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33080218

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Protein Biosynthesis , RNA Splicing , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , A549 Cells , Animals , COVID-19/virology , Chlorocebus aethiops , HEK293 Cells , Humans , Interferons/metabolism , Protein Transport , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/metabolism , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/metabolism , Signal Recognition Particle/chemistry , Signal Recognition Particle/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry
6.
Mutat Res ; 821: 111702, 2020.
Article in English | MEDLINE | ID: mdl-32422468

ABSTRACT

We report the mutational spectra in a segment of the E. coli rpoB gene of bleomycin (BLEO), 4-nitroquinoline-1-oxide (NQO), and hydrogen peroxide (H2O2). We compare these spectra with those of other mutagens and repair deficient strains in the same rpoB system, and review the key elements determining mutational hotspots and outline the questions that remain unanswered. We consider three tiers of hotspots that derive from 1) the nature of the sequence change at a specific base, 2) the direct nearest neighbors and 3) some aspect of the larger sequence context or the local 3D-structure of segments of DNA. This latter tier can have a profound effect on mutation frequencies, even among sites with identical nearest neighbor sequences. BLEO is dependent on the SOS-induced translesion Pol V for mutagenesis, and has a dramatic hotspot at a single mutational site in rpoB. NQO is not dependent on any of the translesion polymerases, in contrast to findings with plasmids treated in vitro and transformed into E. coli. The rpoB system allows one to monitor both G:C -> A:T transitions and G:C -> T:A transversions at the same site in 11 cases, each site having the identical sequence context for each of the two mutations. The combined preference for G:C -> A:T transitions at these sites is 20-fold. Several of the favored sites for hydrogen peroxide mutagenesis are not seen in the spectra of BLEO and NQO mutations, indicating that mutagenesis from reactive oxygen species is not a major cause of BLEO or NQO mutagenesis, but rather specific adducts. The variance in mutation rates at sites with identical nearest neighbors suggests that the local structure of different DNA segments is an important factor in mutational hotspots.


Subject(s)
4-Nitroquinoline-1-oxide/toxicity , Bleomycin/toxicity , DNA-Directed RNA Polymerases/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/radiation effects , Hydrogen Peroxide/toxicity , Mutation , Antibiotics, Antineoplastic/toxicity , DNA-Directed RNA Polymerases/radiation effects , Escherichia coli/radiation effects , Escherichia coli Proteins/radiation effects , Mutagens/toxicity , Oxidants/toxicity
7.
J Struct Biol ; 206(2): 149-155, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30822456

ABSTRACT

High-resolution imaging of hair-cell stereocilia of the inner ear has contributed substantially to our understanding of auditory and vestibular function. To provide three-dimensional views of the structure of stereocilia cytoskeleton and membranes, we developed a method for rapidly freezing unfixed stereocilia on electron microscopy grids, which allowed subsequent 3D imaging by electron cryo-tomography. Structures of stereocilia tips, shafts, and tapers were revealed, demonstrating that the actin paracrystal was not perfectly ordered. This sample-preparation and imaging procedure will allow for examination of structural features of stereocilia in a near-native state.


Subject(s)
Cold Temperature , Electron Microscope Tomography/methods , Hair Cells, Vestibular/ultrastructure , Stereocilia/ultrastructure , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...