Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36298107

ABSTRACT

In this work, we propose a novel diagnostic biosensor that can enable stratification of disease states based on severity and hence allow for clear and actionable diagnoses. The scheme can potentially boost current Point-Of-Care (POC) biosensors for diseases that require time-critical stratification. Here, two key inflammatory biomarkers­Interleukin-8 and Interleukin-6­have been explored as proof of concept, and a four-class stratification of inflammatory disease severity is discussed. Our method is superior to traditional lab techniques as it is faster (<4 minutes turn-around time) and can work with any combination of disease biomarkers to categorize diseases by subtypes and severity. At its core, the biosensor relies on electrochemical impedance spectroscopy to transduce subtle inflammatory stimuli at the input for IL-8 and IL-6 for a limit of detection (LOD) of 1 pg/mL each. The biosensing scheme utilizes a two-stage random forest machine learning model for 4-state output disease classification with a 98.437% accuracy. This scheme can potentially boost the diagnostic power of current electrochemical biosensors for better precision therapy and improved patient outcomes.


Subject(s)
Biosensing Techniques , Interleukin-8 , Humans , Interleukin-6 , Biosensing Techniques/methods , Dielectric Spectroscopy/methods , Biomarkers , Electrochemical Techniques
2.
Magn Reson Imaging ; 79: 1-4, 2021 06.
Article in English | MEDLINE | ID: mdl-33652063

ABSTRACT

The purpose of our study was to assess whether T2 MRI identifies the infarcted myocardium or the true area-at-risk (AAR) and whether edema is present in the salvageable region following acute myocardial infarction (MI). The study involved a porcine model of MI with a coronary occlusion model of either 60 min or 90 min. Imaging was performed on a 3T MRI pre-occlusion and at day 3 post-MI. Prior-MI, myocardial perfusion territory (MPT) maps were obtained under MRI via direct intracoronary injection of contrast agent. Post-MI, edema extent was quantified by T2 mapping while infarction and microvascular obstruction (MVO) were assessed by late gadolinium enhancement (LGE). Anatomically registered short-axis slices were analyzed for MPT, T2-AAR and infarct areas and T2 relaxation values. Animals were divided into groups with (MVO+) and without MVO (MVO-). T2-AAR area was significantly greater than infarct area in both groups. In the MVO+ group, T2-AAR and MPT were comparable and highly correlated, whereas, in the MVO- group, T2-AAR significantly underestimated MPT without any trend. T2 values in the salvageable myocardium were found to be significantly higher than those in remote myocardium. Our methodology offers the advantage that all images are acquired within the same MRI reference as opposed to complex co-registration with gross pathology. Our study suggests that edema may expand beyond the infarct zone over the entire ischemic bed. T2-AAR may be more clinically relevant than true AAR by perfusion territory since it identifies the "salvageable" myocardium.


Subject(s)
Contrast Media , Myocardial Infarction , Animals , Edema/diagnostic imaging , Gadolinium , Magnetic Resonance Imaging, Cine , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardium , Swine
3.
Proc Biol Sci ; 287(1941): 20202291, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33323077

ABSTRACT

A recent hypothesis proposed that the total number of stem cell divisions in a tissue (TSCD model) determine its intrinsic cancer risk; however, a different model-the multistage model-has long been used to understand how cancer originates. Identifying the correct model has important implications for interpreting the frequency of cancers. Using worldwide cancer incidence data, we applied three tests to the TSCD model and an evolutionary multistage model of carcinogenesis (EMMC), a model in which cancer suppression is recognized as an evolving trait, with natural selection acting to suppress cancers causing a significant mean loss of Darwinian fitness. Each test supported the EMMC but contradicted the TSCD model. This outcome undermines results based on the TSCD model quantifying the relative importance of 'bad luck' (the random accumulation of somatic mutations) versus environmental and genetic factors in determining cancer incidence. Our testing supported the EMMC prediction that cancers of large rapidly dividing tissues predominate late in life. Another important prediction is that an indicator of recent oncogenic environmental change is an unusually high mean fitness loss due to cancer, rather than a high lifetime incidence. The evolutionary model also predicts that large and/or long-lived animals have evolved mechanisms of cancer suppression that may be of value in preventing or controlling human cancers.


Subject(s)
Neoplasms/epidemiology , Stem Cells , Animals , Biological Evolution , Cell Division , Genetic Fitness , Humans , Incidence , Models, Biological , Selection, Genetic
5.
Analyst ; 145(3): 784-796, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31867585

ABSTRACT

Chronobiology is defined as the temporal fluctuations occurring in the human physiology due to the circadian cycle. These fluctuations are good indicators of the functioning of the Hypothalamic-Pituitary-Adrenal axis (HPA axis) and can be tracked by using biomarkers: cortisol and DHEA. Low volume tracking systems will be beneficial for patients exposed to chronic stress, patients suffering from endocrine conditions manifested by circadian disruption and act as a lifestyle monitoring tool. The sensor system demonstrated in this work was an affinity-based system, characterized using EIS (Electrochemical Impedance Spectroscopy).The sensor can detect cortisol and DHEA in the physiologically relevant ranges i.e. 8-200 ng ml-1 and 2-131 ng ml-1 respectively. Thus, the senor is a non-invasive, label free, cost-effective solution for tracking chronobiology for circadian diagnostics.


Subject(s)
Biomarkers/analysis , Sweat/metabolism , Biosensing Techniques/methods , Dehydroepiandrosterone/analysis , Dielectric Spectroscopy , Humans , Hydrocortisone/analysis , Hydrogen-Ion Concentration , Life Style , Sweat/chemistry
6.
Cancer Res ; 78(19): 5527-5537, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275052

ABSTRACT

Cancer differs significantly between men and women; even after adjusting for known epidemiologic risk factors, the sexes differ in incidence, outcome, and response to therapy. These differences occur in many but not all tumor types, and their origins remain largely unknown. Here, we compare somatic mutation profiles between tumors arising in men and in women. We discovered large differences in mutation density and sex biases in the frequency of mutation of specific genes; these differences may be associated with sex biases in DNA mismatch repair genes or microsatellite instability. Sex-biased genes include well-known drivers of cancer such as ß-catenin and BAP1 Sex influenced biomarkers of patient outcome, where different genes were associated with tumor aggression in each sex. These data call for increased study and consideration of the molecular role of sex in cancer etiology, progression, treatment, and personalized therapy.Significance: This study provides a comprehensive catalog of sex differences in somatic alterations, including in cancer driver genes, which influence prognostic biomarkers that predict patient outcome after definitive local therapy. Cancer Res; 78(19); 5527-37. ©2018 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Neoplasms/genetics , Sex Factors , Adult , Aged , Aged, 80 and over , DNA Mismatch Repair , DNA Mutational Analysis , Disease Progression , Female , Genome, Human , Humans , Male , Microsatellite Instability , Microsatellite Repeats , Middle Aged , Mutation , Oncogenes , Prognosis , Proportional Hazards Models , Risk Factors , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Young Adult , beta Catenin/genetics
7.
GMS Ophthalmol Cases ; 7: Doc21, 2017.
Article in English | MEDLINE | ID: mdl-28875112

ABSTRACT

Introduction: The cornea may become infected and perforated after epithelium-on collagen crosslinking. Case presentation: A healthy 33-year-old male who underwent corneal collagen crosslinking in both eyes developed a purulent keratitis and bilateral corneal perforations, requiring bilateral penetrating keratoplasties. He was exposed to methicillin resistant staphylococcus aureus (MRSA) by a family member with a tracheostomy and was treated with MRSA-directed antibiotics. After prolonged recovery and treatment of his infection, he had acceptable but limited uncorrected visual acuity, with excellent corrected visual acuity. Conclusion: While epithelium-on crosslinking is commonly thought to be associated with a lower risk of postoperative infection, this case illustrates that even epithelium-on treatment may present the patient with a risk of infection. Patients in higher risk groups who are exposed to infectious disease may be more predisposed.

9.
Genes Dev ; 31(7): 674-687, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28446596

ABSTRACT

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1, Imp2, and Imp3 (Imp1-3) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival.


Subject(s)
Antigens, Neoplasm/genetics , Cell Transformation, Neoplastic/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/physiology , MicroRNAs/genetics , Ribonuclease III/genetics , Ribonuclease III/physiology , Animals , Antigens, Neoplasm/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Knockout , Oncogenes , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptional Activation
10.
Circ Res ; 120(7): 1103-1115, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28219977

ABSTRACT

RATIONALE: It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), ß1, ß2, ß3, α1A, and α1B. The ß1 and ß2 are thought to be the dominant myocyte ARs. OBJECTIVE: Quantify the 5 cardiac ARs in individual ventricular myocytes. METHODS AND RESULTS: We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and ß1 and ß2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the ß1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The ß2 and ß3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total ß-ARs were ß2 and 20% were ß3, both mainly in nonmyocytes. CONCLUSION: The dominant ventricular myocyte ARs present in all cells are the ß1 and α1B. The ß2 and ß3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with ß1 and α1B only; 60% that also have the α1A; and 5% each that also have the ß2 or ß3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms.


Subject(s)
Myocytes, Cardiac/metabolism , Receptors, Adrenergic, alpha/metabolism , Receptors, Adrenergic, beta/metabolism , Animals , Cells, Cultured , Heart Ventricles/cytology , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adrenergic, alpha/genetics , Receptors, Adrenergic, beta/genetics , Single-Cell Analysis
11.
Prog Biomater ; 4(2-4): 67-76, 2015.
Article in English | MEDLINE | ID: mdl-26566465

ABSTRACT

Electrospinning technique was utilized to engineer a small-diameter (id = 4 mm) tubular graft. The tubular graft was made from biocompatible and biodegradable polymers polycaprolactone (PCL) and poliglecaprone with 3:1 (PCL:PGC) ratio. Enzymatic degradation effect on the mechanical properties and fiber morphology in the presence of lipase enzyme were observed. Significant changes in tensile strength (1.86-1.49 MPa) and strain (245-205 %) were noticed after 1 month in vitro degradation. The fiber breakage was clearly evident through scanning electron microscopy (SEM) after 4 weeks in vitro degradation. Then, the graft was coated with a collagenous protein matrix to impart bioactivity. Human umbilical vein endothelial cells (HUVECs) and aortic artery smooth muscle cells (AoSMCs) attachment on the coated graft were observed in static condition. Further, HUVECs were seeded on the lumen surface of the grafts and exposed to laminar shear stress for 12 h to understand the cell attachment. The coated graft was aged in PBS solution (pH 7.3) at 37 °C for 1 month to understand the coating stability. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) suggested the erosion of the protein matrix from the coated graft under in vitro condition.

12.
PLoS Genet ; 9(8): e1003725, 2013.
Article in English | MEDLINE | ID: mdl-23990805

ABSTRACT

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.


Subject(s)
Cell Differentiation/genetics , Chromatin/genetics , Embryonic Development/genetics , Embryonic Stem Cells/cytology , Histones/genetics , Animals , Asparagine/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Glycine/genetics , Mice , Nucleosomes/genetics , Promoter Regions, Genetic , Serine/genetics
13.
PLoS Genet ; 9(2): e1003288, 2013.
Article in English | MEDLINE | ID: mdl-23437007

ABSTRACT

SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.


Subject(s)
Embryonic Stem Cells , Enhancer Elements, Genetic , Nerve Tissue Proteins , Octamer Transcription Factor-3 , POU Domain Factors , SOXB1 Transcription Factors , Animals , Cell Differentiation/genetics , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nucleotide Motifs , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
14.
Am J Physiol Heart Circ Physiol ; 304(7): H946-53, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23355341

ABSTRACT

α1-Adrenergic receptors (α1-ARs) elicit a negative inotropic effect (NIE) in the mouse right ventricular (RV) myocardium but a positive inotropic effect (PIE) in the left ventricular (LV) myocardium. Effects on myofilament Ca(2+) sensitivity play a role, but effects on Ca(2+) handling could also contribute. We monitored the effects of α1-AR stimulation on contraction and Ca(2+) transients using single myocytes isolated from the RV or LV. Interestingly, for both the RV and LV, we found heterogeneous myocyte inotropic responses. α1-ARs mediated either a PIE or NIE, although RV myocytes had a greater proportion of cells manifesting a NIE (68%) compared with LV myocytes (36%). Stimulation of a single α1-AR subtype (α1A-ARs) with a subtype-selective agonist also elicited heterogeneous inotropic responses, suggesting that the heterogeneity arose from events downstream of the α1A-AR subtype. For RV and LV myocytes, an α1-AR-mediated PIE was associated with an increased Ca(2+) transient and a NIE was associated with a decreased Ca(2+) transient, suggesting a key role for Ca(2+) handling. For RV and LV myocytes, α1-AR-mediated decreases in the Ca(2+) transient were associated with increased Ca(2+) export from the cell and decreased Ca(2+) content of the sarcoplasmic reticulum. In contrast, for myocytes with α1-AR-induced increased Ca(2+) transients, sarcoplasmic reticulum Ca(2+) content was not increased, suggesting that other mechanisms contributed to the increased Ca(2+) transients. This study demonstrates the marked heterogeneity of LV and RV cellular inotropic responses to stimulation of α1-ARs and reveals a new aspect of biological heterogeneity among myocytes in the regulation of contraction.


Subject(s)
Adrenergic alpha-1 Receptor Agonists/pharmacology , Heart Ventricles/metabolism , Myocytes, Cardiac/drug effects , Receptors, Adrenergic, alpha-1/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Heart Ventricles/cytology , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcoplasmic Reticulum/metabolism
15.
EMBO J ; 31(7): 1811-22, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22333915

ABSTRACT

MBF and SBF transcription factors regulate a large family of coordinately expressed G1/S genes required for early cell-cycle functions including DNA replication and repair. SBF is inactivated upon S-phase entry by Clb/CDK whereas MBF targets are repressed by the co-repressor, Nrm1. Using genome-wide expression analysis of cells treated with methyl methane sulfonate (MMS), hydroxyurea (HU) or camptothecin (CPT), we show that genotoxic stress during S phase specifically induces MBF-regulated genes. This occurs via direct phosphorylation of Nrm1 by Rad53, the effector checkpoint kinase, which prevents its binding to MBF target promoters. We conclude that MBF-regulated genes are distinguished from SBF-regulated genes by their sensitivity to activation by the S-phase checkpoint, thereby, providing an effective mechanism for enhancing DNA replication and repair and promoting genome stability.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage/genetics , DNA Replication , G1 Phase/genetics , Gene Expression Regulation, Fungal , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , S Phase/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Camptothecin/pharmacology , Cell Cycle Proteins/genetics , Checkpoint Kinase 2 , Hydroxyurea/pharmacology , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...