Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Genes Dev ; 31(7): 674-687, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28446596

ABSTRACT

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1, Imp2, and Imp3 (Imp1-3) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival.


Subject(s)
Antigens, Neoplasm/genetics , Cell Transformation, Neoplastic/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/physiology , MicroRNAs/genetics , Ribonuclease III/genetics , Ribonuclease III/physiology , Animals , Antigens, Neoplasm/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Knockout , Oncogenes , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptional Activation
3.
PLoS Genet ; 9(8): e1003725, 2013.
Article in English | MEDLINE | ID: mdl-23990805

ABSTRACT

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.


Subject(s)
Cell Differentiation/genetics , Chromatin/genetics , Embryonic Development/genetics , Embryonic Stem Cells/cytology , Histones/genetics , Animals , Asparagine/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Glycine/genetics , Mice , Nucleosomes/genetics , Promoter Regions, Genetic , Serine/genetics
4.
PLoS Genet ; 9(2): e1003288, 2013.
Article in English | MEDLINE | ID: mdl-23437007

ABSTRACT

SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors.


Subject(s)
Embryonic Stem Cells , Enhancer Elements, Genetic , Nerve Tissue Proteins , Octamer Transcription Factor-3 , POU Domain Factors , SOXB1 Transcription Factors , Animals , Cell Differentiation/genetics , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nucleotide Motifs , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Promoter Regions, Genetic , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...