Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 124: 105096, 2021 02.
Article in English | MEDLINE | ID: mdl-33296841

ABSTRACT

Adrenal glucocorticoid secretion into the systematic circulation is characterised by a complex rhythm, composed of the diurnal variation, formed by changes in pulse amplitude of an underlying ultradian rhythm of short duration hormonal pulses. To elucidate the potential neurobiological significance of glucocorticoid pulsatility in man, we have conducted a randomised, double-blind, placebo-controlled, three-way crossover clinical trial on 15 healthy volunteers, investigating the impact of different glucocorticoid rhythms on measures of mood and neural activity under resting conditions by recruiting functional neuroimaging, computerised behavioural tests and ecological momentary assessments. Endogenous glucocorticoid biosynthesis was pharmacologically suppressed, and plasma levels of corticosteroid restored by hydrocortisone replacement in three different regimes, either mimicking the normal ultradian and circadian profile of the hormone, or retaining the normal circadian but abolishing the ultradian rhythm of the hormone, or by our current best oral replacement regime which results in a suboptimal circadian and ultradian rhythm. Our results indicate that changes in the temporal mode of glucocorticoid replacement impact (i) the morning levels of self-perceived vigour, fatigue and concentration, (ii) the diurnal pattern of mood variation, (iii) the within-network functional connectivity of various large-scale resting state networks of the human brain, (iv) the functional connectivity of the default-mode, salience and executive control networks with glucocorticoid-sensitive nodes of the corticolimbic system, and (v) the functional relationship between mood variation and underlying neural networks. The findings indicate that the pattern of the ultradian glucocorticoid rhythm could affect cognitive psychophysiology under non-stressful conditions and opens new pathways for our understanding on the neuropsychological effects of cortisol pulsatility with relevance to the goal of optimising glucocorticoid replacement strategies.


Subject(s)
Glucocorticoids , Ultradian Rhythm , Brain , Circadian Rhythm , Humans , Hydrocortisone
2.
Brain Topogr ; 32(3): 492-503, 2019 05.
Article in English | MEDLINE | ID: mdl-30895423

ABSTRACT

Establishing language dominance is an important step in the presurgical evaluation of patients with refractory epilepsy. In the absence of a universally accepted gold-standard non-invasive method to determine language dominance in the preoperative assessment, a range of tools and methodologies have recently received attention. When applied to pediatric age, many of the proposed methods, such as functional magnetic resonance imaging (fMRI), may present some challenges due to the time-varying effects of epileptogenic lesions and of on-going seizures on maturational phenomena. Magnetoencephalography (MEG) has the advantage of being insensitive to the distortive effects of anatomical lesions on brain microvasculature and to differences in the metabolism or vascularization of the developing brain and also provides a less intimidating recording environment for younger children. In this study we investigated the reliability of lateralized synchronous cortical activation during a verb generation task in a group of 28 children (10 males and 18 females, mean age 12 years) with refractory epilepsy who were evaluated for epilepsy surgery. The verb generation task was associated with significant decreases in beta oscillatory power (13-30 Hz) in frontal and temporal lobes. The MEG data were compared with other available presurgical non-invasive data including cortical stimulation, neuropsychological and fMRI data on language lateralization where available. We found that the lateralization of MEG beta power reduction was concordant with language dominance determined by one or more different assessment methods (i.e. cortical stimulation mapping, neuropsychological, fMRI or post-operative data) in 89% of patients. Our data suggest that qualitative hemispheric differences in task-related changes of spectral power could offer a promising insight into the contribution of dominant and non-dominant hemispheres in language processing and may help to characterize the specialization and lateralization of language processes in children.


Subject(s)
Brain Mapping/methods , Brain/physiology , Drug Resistant Epilepsy/surgery , Functional Laterality , Language , Magnetoencephalography/methods , Adolescent , Child , Female , Frontal Lobe/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Neurosurgical Procedures , Reproducibility of Results , Temporal Lobe/physiology
3.
Trials ; 17: 44, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801980

ABSTRACT

BACKGROUND: Deviation from the physiological glucocorticoid dynamics (circadian and underlying ultradian rhythmicity) is a common characteristic of various neuropsychiatric and endocrine disorders as well as glucocorticoid-based therapeutics. These states may be accompanied by neuropsychiatric symptomatology, suggesting continuous dynamic glucocorticoid equilibrium is essential for brain homeostasis. METHODS/DESIGN: The study consists of two parts. The preliminary stage of the study aims to validate (technically and pharmacologically) and optimise three different patterns of systemic cortisol administration in man. These patterns are based on the combinatory administration of metyrapone, to suppress endogenous cortisol production, and concurrent hydrocortisone replacement. The second, subsequent, core part of the study is a randomised, double-blinded, placebo-controlled, crossover study, where participants (healthy male individuals aged 18-60 years) will undergo all three hydrocortisone replacement schemes. During these infusion regimes, we plan a number of neurobehavioural tests and imaging of the brain to assess neural processing, emotional reactivity and perception, mood and self-perceived well-being. The psychological tests include: ecological momentary assessment, P1vital Oxford Emotional Test Battery and Emotional Potentiated Startle Test, Leeds Sleep Evaluation Questionnaire and the visual working memory task (n-back). The neuroimaging protocol combines magnetic resonance sequences that capture data related to the functional and perfusion status of the brain. DISCUSSION: Results of this clinical trial are designed to evaluate the impact (with possible mechanistic insights) of different patterns of daily glucocorticoid dynamics on neural processing and reactivity related to emotional perception and mood. This evidence should contribute to the optimisation of the clinical application of glucocorticoid-based therapeutics. TRIAL REGISTRATION: UK Clinical Research Network, IRAS Ref: 106181, UKCRN-ID-15236 (23 October 2013).


Subject(s)
Brain/drug effects , Clinical Protocols , Emotions/drug effects , Hydrocortisone/pharmacology , Adolescent , Adult , Brain/physiology , Cross-Over Studies , Hormone Replacement Therapy , Humans , Male , Middle Aged , Neuroimaging
4.
Brain Topogr ; 27(1): 197-207, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24249204

ABSTRACT

To investigate if Magnetoencephalography (MEG) can add non-redundant information to guide implantation sites for intracranial recordings (IR). The contribution of MEG to intracranial recording planning was evaluated in 12 consecutive patients assessed pre-surgically with MEG followed by IR. Primary outcome measures were the identification of focal seizure onset in IR and favorable surgical outcome. Outcome measures were compared to those of 12 patients matched for implantation type in whom non-invasive pre-surgical assessment suggested clear hypotheses for implantation (non-MEG group). In the MEG group, non-invasive assessment without MEG was inconclusive, and MEG was then used to further help identify implantation sites. In all MEG patients, at least one virtual MEG electrode generated suitable hypotheses for the location of implantations. No differences in outcome measures were found between non-MEG and MEG groups. Although the MEG group included more complex patients, it showed similar percentage of successful implantations as the non-MEG group. This suggests that MEG can contribute to identify implantation sites where standard methods failed.


Subject(s)
Brain/surgery , Electrodes, Implanted , Epilepsy/surgery , Magnetoencephalography , Adolescent , Adult , Brain/physiopathology , Electroencephalography , Epilepsy/physiopathology , Humans , Middle Aged , Treatment Outcome , Young Adult
5.
Eur J Neurosci ; 34(4): 652-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21749494

ABSTRACT

Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.


Subject(s)
Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Visual Cortex/physiology , Algorithms , Humans , Magnetoencephalography , Photic Stimulation
6.
Behav Neurol ; 24(1): 43-6, 2011.
Article in English | MEDLINE | ID: mdl-21447897

ABSTRACT

In spite of the inherent difficulties in achieving a biologically meaningful definition of consciousness, recent neurophysiological studies are starting to provide some insight in fundamental mechanisms associated with impaired consciousness in neurological disorders. Generalised seizures are associated with disruption of the default state network, a functional network of discrete brain areas, which include the fronto-parietal cortices. Subcortical contribution through activation of thalamocortical structures, as well as striate nuclei are also crucial to produce impaired consciousness in generalised seizures.


Subject(s)
Brain/physiopathology , Consciousness/physiology , Epilepsy, Generalized/physiopathology , Nerve Net/physiopathology , Electroencephalography , Humans , Neurons/physiology
7.
PLoS One ; 5(11): e13865, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21079764

ABSTRACT

BACKGROUND: The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception. METHODOLOGY/PRINCIPAL FINDINGS: Stimuli were horizontal, rotational and radial Glass patterns. Glass patterns without coherent structure were viewed during the baseline period to ensure neuronal responses reflected perception of structure and not changes in local image features. The spatial distribution of task-related changes in source power was mapped using Synthetic Aperture Magnetometry (SAM), and the time course of activity within areas of maximal power change was determined by calculating time-frequency plots using a Hilbert transform. For six out of eight observers, passive viewing of global structure was associated with a reduction in 10-20 Hz cortical oscillatory power within extrastriate occipital cortex. The location of greatest power change was the same for each pattern type, being close to or within visual area V3a. No peaks of activity were observed in area V1. Time-frequency analyses indicated that neural activity was least for horizontal patterns. CONCLUSIONS: We conclude: (i) visual area V3a is involved in the analysis of global form; (ii) the neural signature for perception of structure, as assessed using MEG, is a reduction in 10-20 Hz oscillatory power; (iii) different neural processes may underlie the perception of horizontal as opposed to radial or rotational structure; and (iv) area V1 is not strongly activated by global form in Glass patterns.


Subject(s)
Glass , Magnetoencephalography/methods , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Adult , Brain Mapping , Cues , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychomotor Performance/physiology , Reaction Time/physiology , Task Performance and Analysis , Visual Cortex/physiology , Visual Pathways/physiology
8.
J Cogn Neurosci ; 19(1): 13-24, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17214559

ABSTRACT

Many complex tasks require us to flexibly switch between behavioral rules, associations, and strategies. The prefrontal cerebral cortex is thought to be critical to the performance of such behaviors, although the relative contribution of different components of this structure and associated subcortical regions are not fully understood. We used functional magnetic resonance imaging to measure brain activity during a simple task which required repeated reversals of a rule linking a colored cue and a left/right motor response. Each trial comprised three discrete events separated by variable delay periods. A colored cue instructed which response was to be executed, followed by a go signal which told the subject to execute the response and a feedback instruction which indicated whether to "hold" or "flip" the rule linking the colored cue and response. The design allowed us to determine which brain regions were recruited by the specific demands of preparing a rule contingent motor response, executing such a response, evaluating the significance of the feedback, and reconfiguring stimulus-response (SR) associations. The results indicate that an increase in neural activity occurs within the anterior cingulate gyrus under conditions in which SR associations are labile. In contrast, lateral frontal regions are activated by unlikely/unexpected perceptual events regardless of their significance for behavior. A network of subcortical structures, including the mediodorsal nucleus of the thalamus and striatum were the only regions showing activity that was exclusively correlated with the neurocognitive demands of reversing SR associations. We conclude that lateral frontal regions act to evaluate the behavioral significance of perceptual events, whereas medial frontal-thalamic circuits are involved in monitoring and reconfiguring SR associations when necessary.


Subject(s)
Attention/physiology , Brain Mapping , Gyrus Cinguli/physiology , Prefrontal Cortex/physiology , Adolescent , Adult , Cues , Feedback/physiology , Functional Laterality , Gyrus Cinguli/blood supply , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Middle Aged , Neural Pathways , Oxygen/blood , Photic Stimulation/methods , Prefrontal Cortex/blood supply , Reaction Time/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...