Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(1): 106-126.e13, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181747

ABSTRACT

Tissue stem-progenitor cell frequency has been implicated in tumor risk and progression, but tissue-specific factors linking these associations remain ill-defined. We observed that stiff breast tissue from women with high mammographic density, who exhibit increased lifetime risk for breast cancer, associates with abundant stem-progenitor epithelial cells. Using genetically engineered mouse models of elevated integrin mechanosignaling and collagen density, syngeneic manipulations, and spheroid models, we determined that a stiff matrix and high mechanosignaling increase mammary epithelial stem-progenitor cell frequency and enhance tumor initiation in vivo. Augmented tissue mechanics expand stemness by potentiating extracellular signal-related kinase (ERK) activity to foster progesterone receptor-dependent RANK signaling. Consistently, we detected elevated phosphorylated ERK and progesterone receptors and increased levels of RANK signaling in stiff breast tissue from women with high mammographic density. The findings link fibrosis and mechanosignaling to stem-progenitor cell frequency and breast cancer risk and causally implicate epidermal growth factor receptor-ERK-dependent hormone signaling in this phenotype.


Subject(s)
Breast Neoplasms , Animals , Mice , Female , Humans , Signal Transduction , Extracellular Signal-Regulated MAP Kinases , Epithelial Cells , Hormones
2.
Cancer Cell Int ; 22(1): 286, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123697

ABSTRACT

BACKGROUND: Intratumoral (IT) delivery of toll-like receptor (TLR) agonists has shown encouraging anti-tumor benefit in preclinical and early clinical studies. However, IT delivery of TLR agonists may lead to rapid effusion from the tumor microenvironment (TME), potentially limiting the duration of local inflammation and increasing the risk of systemic adverse events. METHODS: To address these limitations, TransCon™ TLR7/8 Agonist-an investigational sustained-release prodrug of resiquimod that uses a TransCon linker and hydrogel technology to achieve sustained and predictable IT release of resiquimod-was developed. TransCon TLR7/8 Agonist was characterized for resiquimod release in vitro and in vivo, in mice and rats, and was assessed for anti-tumor efficacy and pharmacodynamic activity in mice. RESULTS: Following a single IT dose, TransCon TLR7/8 Agonist mediated potent tumor growth inhibition which was associated with sustained resiquimod release over several weeks with minimal induction of systemic cytokines. TransCon TLR7/8 Agonist monotherapy promoted activation of antigen-presenting cells in the TME and tumor-draining lymph nodes, with evidence of activation and expansion of CD8+ T cells in the tumor-draining lymph node and TME. Combination of TransCon TLR7/8 Agonist with systemic immunotherapy further promoted anti-tumor activity in TransCon TLR7/8 Agonist-treated tumors. In a bilateral tumor setting, combination of TransCon TLR7/8 Agonist with systemic IL-2 potentiated tumor growth inhibition in both injected and non-injected tumors and conferred protection against tumor rechallenge following complete regressions. CONCLUSIONS: Our findings show that a single dose of TransCon TLR7/8 Agonist can mediate sustained local release of resiquimod in the TME and promote potent anti-tumor effects as monotherapy and in combination with systemic immunotherapy, supporting TransCon TLR7/8 Agonist as a novel intratumoral TLR agonist for cancer therapy. A clinical trial to evaluate the safety and efficacy of TransCon TLR7/8 Agonist, as monotherapy and in combination with pembrolizumab, in cancer patients is currently ongoing (transcendIT-101; NCT04799054).

3.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35817480

ABSTRACT

BACKGROUND: Recombinant interleukin-2 (IL-2, aldesleukin) is an approved cancer immunotherapy but causes severe toxicities including cytokine storm and vascular leak syndrome (VLS). IL-2 promotes antitumor function of IL-2Rß/γ+ natural killer (NK) cells and CD8+, CD4+ and gamma delta (γδ) T cells. However, IL-2 also potently activates immunosuppressive IL-2Rα+ regulatory T cells (Tregs) and IL-2Rα+ eosinophils and endothelial cells, which may promote VLS. Aldesleukin is rapidly cleared requiring frequent dosing, resulting in high Cmax likely potentiating toxicity. Thus, IL-2 cancer immunotherapy has two critical drawbacks: potent activation of undesired IL-2Rα+ cells and suboptimal pharmacokinetics with high Cmax and short half-life. METHODS: TransCon IL-2 ß/γ was designed to optimally address these drawbacks. To abolish IL-2Rα binding yet retain strong IL-2Rß/γ activity, IL-2 ß/γ was created by permanently attaching a small methoxy polyethylene glycol (mPEG) moiety in the IL-2Rα binding site. To improve pharmacokinetics, IL-2 ß/γ was transiently attached to a 40 kDa mPEG carrier via a TransCon (transient conjugation) linker creating a prodrug, TransCon IL-2 ß/γ, with sustained release of IL-2 ß/γ. IL-2 ß/γ was characterized in binding and primary cell assays while TransCon IL-2 ß/γ was studied in tumor-bearing mice and cynomolgus monkeys. RESULTS: IL-2 ß/γ demonstrated selective and potent human IL-2Rß/γ binding and activation without IL-2Rα interactions. TransCon IL-2 ß/γ showed slow-release pharmacokinetics with a low Cmax and a long (>30 hours) effective half-life for IL-2 ß/γ in monkeys. In mouse tumor models, TransCon IL-2 ß/γ promoted CD8+ T cell and NK cell activation and antitumor activity. In monkeys, TransCon IL-2 ß/γ induced robust activation and expansion of CD8+ T cells, NK cells and γδ T cells, relative to CD4+ T cells, Tregs and eosinophils, with no evidence of cytokine storm or VLS. Similarly, IL-2 ß/γ enhanced proliferation and cytotoxicity of primary human CD8+ T cells, NK cells and γδ T cells. SUMMARY: TransCon IL-2 ß/γ is a novel long-acting prodrug with sustained release of an IL-2Rß/γ-selective IL-2. It has remarkable and durable pharmacodynamic effects in monkeys and potential for improved clinical efficacy and tolerability compared with aldesleukin. TransCon IL-2 ß/γ is currently being evaluated in a Phase 1/2 clinical trial (NCT05081609).


Subject(s)
Neoplasms , Prodrugs , Animals , CD8-Positive T-Lymphocytes , Cytokine Release Syndrome , Delayed-Action Preparations/pharmacology , Endothelial Cells , Humans , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit , Mice , Neoplasms/drug therapy , Prodrugs/pharmacology
4.
Biomaterials ; 123: 24-38, 2017 04.
Article in English | MEDLINE | ID: mdl-28152381

ABSTRACT

The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Chemokine CXCL12/metabolism , Extracellular Matrix/metabolism , Heparitin Sulfate/metabolism , Myoblasts/physiology , Animals , Cell Line , Extracellular Matrix Proteins/metabolism , Mice , Myoblasts/cytology , Protein Binding
5.
Open Biol ; 7(1)2017 01.
Article in English | MEDLINE | ID: mdl-28123055

ABSTRACT

Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine-GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.


Subject(s)
Chemokines/chemistry , Chemokines/metabolism , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Animals , Binding Sites , Cell Adhesion , Chemokines/genetics , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Multimerization , Receptors, Chemokine/metabolism , Signal Transduction
6.
Matrix Biol ; 57-58: 178-189, 2017 01.
Article in English | MEDLINE | ID: mdl-28025167

ABSTRACT

Clinically, non-invasive carcinomas are confined to the epithelial side of the basement membrane and are classified as benign, whereas invasive cancers invade through the basement membrane and thereby acquire the potential to metastasize. Recent findings suggest that, in addition to protease-mediated degradation and chemotaxis-stimulated migration, basement membrane invasion by malignant cells is significantly influenced by the stiffness of the associated interstitial extracellular matrix and the contractility of the tumor cells that is dictated in part by their oncogenic genotype. In this review, we highlight recent findings that illustrate unifying molecular mechanisms whereby these physical cues contribute to tissue fibrosis and malignancy in three epithelial organs: breast, pancreas, and liver. We also discuss the clinical implications of these findings and the biological properties and clinical challenges linked to the unique biology of each of these organs.


Subject(s)
Basement Membrane/metabolism , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Pancreatic Neoplasms/metabolism , Stress, Mechanical , Basement Membrane/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chemotaxis , Collagen/genetics , Collagen/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Humans , Laminin/genetics , Laminin/metabolism , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology
7.
Integr Biol (Camb) ; 8(7): 795-804, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27334548

ABSTRACT

The mechanical properties of the extracellular matrix influence cell signaling to regulate key cellular processes, including differentiation, apoptosis, and transformation. Understanding the molecular mechanisms underlying mechanotransduction is contingent upon our ability to visualize the effect of altered matrix properties on the nanoscale organization of proteins involved in this signalling. The development of super-resolution imaging techniques has afforded researchers unprecedented ability to probe the organization and localization of proteins within the cell. However, most of these methods require use of substrates like glass or silicon wafers, which are artificially rigid. In light of a growing body of literature demonstrating the importance of mechanical properties of the extracellular matrix in regulating many aspects of cellular behavior and signaling, we have developed a system that allows scanning angle interference microscopy on a mechanically tunable substrate. We describe its implementation in detail and provide examples of how it may be used to aide investigations into the effect of substrate rigidity on intracellular signaling.


Subject(s)
Cell Adhesion/radiation effects , Extracellular Matrix/physiology , Extracellular Matrix/ultrastructure , Micromanipulation/methods , Nanoparticles/ultrastructure , Silicone Gels/chemistry , Cell Line , Epithelial Cells/cytology , Epithelial Cells/physiology , Humans , Image Enhancement , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force , Microscopy, Interference , Shear Strength , Stress, Mechanical , Tensile Strength/physiology
8.
Open Biol ; 5(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26269427

ABSTRACT

The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains--their local density, orientation, conformation and lateral mobility--and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.


Subject(s)
Cytokines/metabolism , Heparitin Sulfate/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Chemokine CXCL12/chemistry , Chemokine CXCL12/metabolism , Cytokines/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Molecular Conformation , Protein Binding
9.
Anal Chem ; 87(15): 7566-74, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26122480

ABSTRACT

Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Chemistry Techniques, Analytical/methods , Molecular Weight , Quartz Crystal Microbalance Techniques , Small Molecule Libraries/analysis , Tyrosine/analogs & derivatives , Tyrosine/chemistry
10.
Chem Commun (Camb) ; 50(96): 15148-51, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25338834

ABSTRACT

We demonstrate the quartz crystal microbalance as a novel method to quantify the reaction yields and stability of the terminal conjugation of chemically complex molecules. Oxime ligation is identified as a facile, broadly applicable method for the reducing-end conjugation of glycosaminoglycans that overcomes the limited stability and yield of popular hydrazone ligation.


Subject(s)
Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Hyaluronic Acid/chemistry , Hydrazones/chemistry , Oximes/chemistry , Quartz Crystal Microbalance Techniques
11.
J Biol Chem ; 289(44): 30481-30498, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25190808

ABSTRACT

Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.


Subject(s)
C-Reactive Protein/chemistry , Extracellular Matrix/physiology , Hyaluronic Acid/chemistry , Serum Amyloid P-Component/chemistry , Alpha-Globulins/chemistry , Animals , Cell Adhesion Molecules/chemistry , Cell Line , Drosophila melanogaster , Extracellular Matrix/chemistry , Female , Humans , Ovarian Follicle/metabolism , Protein Binding
12.
Biomaterials ; 35(32): 8903-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25088726

ABSTRACT

Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method to create well-defined biomimetic surfaces that display GAGs, either alone or together with other cell ligands, in a background that suppresses non-specific binding. Through the design of the immobilization platform - a streptavidin monolayer serves as a molecular breadboard for the attachment of various biotinylated ligands - and a set of surface-sensitive in situ analysis techniques (including quartz crystal microbalance and spectroscopic ellipsometry), the biomimetic surfaces are tailor made with tight control on biomolecular orientation, surface density and lateral mobility. Analysing the interactions between a selected GAG (heparan sulphate, HS) and the HS-binding chemokine CXCL12α (also called SDF-1α), we demonstrate that these surfaces are versatile for biomolecular and cellular interaction studies. T-lymphocytes are found to adhere specifically to surfaces presenting CXCL12α, both when reversibly bound through HS and when irreversibly immobilized on the inert surface, even in the absence of any bona fide cell adhesion ligand. Moreover, surfaces which present both HS-bound CXCL12α and the intercellular adhesion molecule 1 (ICAM-1) synergistically promote cell adhesion. Our surface biofunctionalization strategy should be broadly applicable for functional studies that require a well-defined supramolecular presentation of GAGs along with other matrix or cell-surface components.


Subject(s)
Biomimetics/methods , Cell Membrane/chemistry , Chemokine CXCL12/chemistry , Glycosaminoglycans/chemistry , Intercellular Adhesion Molecule-1/chemistry , Biotinylation , Cell Adhesion , Extracellular Matrix/chemistry , Fibronectins/chemistry , Heparitin Sulfate/chemistry , Humans , Jurkat Cells , Ligands , Models, Molecular , Protein Binding , Recombinant Proteins/chemistry , Serum Albumin, Bovine/chemistry , Streptavidin/chemistry , Surface Plasmon Resonance , Surface Properties , T-Lymphocytes/chemistry
13.
Chembiochem ; 15(3): 377-81, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24449469

ABSTRACT

A quartz crystal microbalance technique with dissipation monitoring and a complementary optical microscopy technique were used for monitoring the capture and release of specific cells on a surface displaying a bifunctional molecular device, composed of a molecular scaffold endowed with the cell recognition property of an RGD ligand and a ß-CD/Fc redox-switchable system.


Subject(s)
Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Cell Separation , Ferrous Compounds/chemistry , HEK293 Cells , Humans , Integrin alphaVbeta3/metabolism , Metallocenes , Microscopy , Oxidation-Reduction , Peptides, Cyclic/metabolism , Quartz Crystal Microbalance Techniques , Surface Properties , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...