Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(12): 19692-19701, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34890505

ABSTRACT

Various analog applications, such as phase switching, have been demonstrated using either ambipolar or anti-ambipolar transport in two-dimensional materials. However, the availability of only one transport mode severely limits the application scope and range. This work demonstrates electrostatically reconfigurable and tunable ambipolar and anti-ambipolar transport in the same field-effect transistor using a photoactive ambipolar WSe2 channel with gate-controlled channel and Schottky barriers. This enables the realization of in-phase, out-of-phase, and double-frequency sinusoidal output signals under dark and illumination conditions. The output waveforms were used to generate phase-, frequency-, and amplitude-modulated analog schemes for 2- and 3-bit data transmission. Evaluation of all possible schemes for their power consumption, error probability, and implementation complexity highlights the importance of switching between ambipolar and anti-ambipolar modes of transport for best transmission performance. A dual-metal contact transistor with improved linearity for harmonic and excess power suppression demonstrates further performance enhancement. Generic device architecture and operation makes this work adaptable to any ambipolar material amenable to electrostatic control.

2.
Nat Commun ; 12(1): 3336, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099709

ABSTRACT

Layered transition metal dichalcogenides have shown tremendous potential for photodetection due to their non-zero direct bandgaps, high light absorption coefficients and carrier mobilities, and ability to form atomically sharp and defect-free heterointerfaces. A critical and fundamental bottleneck in the realization of high performance detectors is their trap-dependent photoresponse that trades off responsivity with speed. This work demonstrates a facile method of attenuating this trade-off by nearly 2x through integration of a lateral, in-plane, electrostatically tunable p-n homojunction with a conventional WSe2 phototransistor. The tunable p-n junction allows modulation of the photocarrier population and width of the conducting channel independently from the phototransistor. Increased illumination current with the lateral p-n junction helps achieve responsivity enhancement upto 2.4x at nearly the same switching speed (14-16 µs) over a wide range of laser power (300 pW-33 nW). The added benefit of reduced dark current enhances specific detectivity (D*) by nearly 25x to yield a maximum measured flicker noise-limited D* of 1.1×1012 Jones. High responsivity of 170 A/W at 300 pW laser power along with the ability to detect sub-1 pW laser switching are demonstrated.

3.
Nano Lett ; 20(3): 1707-1717, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32078333

ABSTRACT

Pn heterojunctions comprising layered van der Waals (vdW) semiconductors have been used to demonstrate current-rectifiers, photodetectors, and photovoltaic devices. However, a direct or near-direct heterointerface bandgap for enhanced photogeneration in high light-absorbing few-layer vdW materials remains unexplored. In this work, for the first time, density functional theory calculations show that the heterointerface of few-layer group-6 transition metal dichalcogenide (TMD) WSe2 with group-7 ReS2 results in a sizable (0.7 eV) near-direct type-II bandgap. The interlayer IR bandgap is confirmed through IR photodetection, and microphotoluminescence measurements demonstrate type-II alignment. Few-layer flakes exhibit ultrafast response time (5 µs), high responsivity (3 A/W), and large photocurrent-generation and responsivity-enhancement at the hetero-overlap region (10-100×). Large open-circuit voltage of 0.64 V and short-circuit current of 2.6 µA enable high output electrical power. Finally, long-term air-stability and facile single contact metal fabrication process make the multifunctional few-layer WSe2/ReS2 heterostructure diode technologically promising for next-generation optoelectronics.

4.
ACS Appl Mater Interfaces ; 10(42): 36512-36522, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30251824

ABSTRACT

Rhenium disulfide (ReS2) is an attractive candidate for photodetection applications owing to its thickness-independent direct band gap. Despite various photodetection studies using two-dimensional semiconductors, the trade-off between responsivity and response time under varying measurement conditions has not been studied in detail. This report presents a comprehensive study of the architectural, laser power and gate bias dependence of responsivity and speed in supported and suspended ReS2 phototransistors. Photocurrent scans show uniform photogeneration across the entire channel because of enhanced optical absorption and a direct band gap in multilayer ReS2. A high responsivity of 4 A W-1 (at 50 ms response time) and a low response time of 20 µs (at 4 mA W-1 responsivity) make this one of the fastest reported transition-metal dichalcogenide photodetectors. Occupancy of intrinsic (bulk ReS2) and extrinsic (ReS2/SiO2 interface) traps is modulated using gate bias to demonstrate tunability of the response time (responsivity) over 4 orders (15×) of magnitude, highlighting the versatility of these photodetectors. Differences in the trap distributions of suspended and supported channel architectures, and their occupancy under different gate biases enable switching the dominant operating mechanism between either photogating or photoconduction. Further, a new metric that captures intrinsic photodetector performance by including the trade-off between its responsivity and speed, besides normalizing for the applied bias and geometry, is proposed and benchmarked for this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...