Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hematol ; 99(5): 890-899, 2024 May.
Article in English | MEDLINE | ID: mdl-38444268

ABSTRACT

Natural killer (NK)-cells have potent anti-tumor effects, yet it remains unclear if they are effective for patients with relapsed acute myeloid leukemia (AML). In a phase I clinical trial, we treated 12 patients (median age 60 years) with refractory AML (median 5 lines of prior therapy, median bone marrow blast count of 47%) with fludarabine/cytarabine followed by 6 infusions of NK-cells expanded from haploidentical donors using K562 feeder cells expressing membrane-bound IL21 and 4-1BBL. Patients received 106-107/kg/dose. No toxicity or graft-versus-host disease (GVHD) was observed and MTD was not reached. Seven patients (58.3%) responded and achieved a complete remission (CR) with/without count recovery. Median time to best response was 48 days. Five responding patients proceeded to a haploidentical transplant from the same donor. After a median follow-up of 52 months, 1-year overall survival (OS) for the entire group was 41.7%, better for patients who responded with CR/CRi (57.14%), and for patients who responded and underwent transplantation (60%). Persistence and expansion of donor-derived NK-cells were identified in patients' blood, and serum IFNγ levels rose concurrently with NK cell infusions. A higher count-functional inhibitory KIR was associated with higher likelihood of achieving CR/CRi. In conclusion, we observed a significant response to ex vivo expanded NK-cell administration in refractory AML patients without adverse effects.


Subject(s)
Graft vs Host Disease , Leukemia, Myeloid, Acute , Humans , Middle Aged , Killer Cells, Natural/pathology , Graft vs Host Disease/etiology , Cytarabine , Haplotypes
2.
Cancers (Basel) ; 15(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36765663

ABSTRACT

Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3ß) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3ß in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3ß-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3ß levels, allowing us to study GSK3ß function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3ß. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3ß-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3ß in regulating NK cell metabolism.

3.
Front Genome Ed ; 4: 781531, 2022.
Article in English | MEDLINE | ID: mdl-35199100

ABSTRACT

Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient's immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.

4.
Methods Cell Biol ; 167: 163-170, 2022.
Article in English | MEDLINE | ID: mdl-35152994

ABSTRACT

The field of cellular immunotherapy for cancer has experienced exponential growth over the last decade. Several chimeric antigen receptor T cell products have already received FDA approval, which has stimulated growth and enthusiasm for other cellular therapies. Preclinical models are critical steps in the development of these products, and understanding their in vivo trafficking and persistence are critical components of their efficacy and toxicity analogous to volume of distribution and tissue penetration in small molecule therapeutics. Thus, well-established preclinical methodologies for following cells after adoptive transfer are important to understanding immune cell trafficking to, and persistence in, tumors or organs of interest. Here, we describe a quick and reliable method for labeling and in vivo tracking of immune cells adoptively transferred into small animal models by using in vivo fluorescent imaging.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Immunotherapy , Immunotherapy, Adoptive/methods , Optical Imaging , T-Lymphocytes
5.
Blood Adv ; 5(22): 4605-4618, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34559190

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular processes in cancer and immunity, including innate immune cell development and effector function. However, the transcriptional repertoire through which AHR mediates these effects remains largely unexplored. To elucidate the transcriptional elements directly regulated by AHR in natural killer (NK) cells, we performed RNA and chromatin immunoprecipitation sequencing on NK cells exposed to AHR agonist or antagonist. We show that mature peripheral blood NK cells lack AHR, but its expression is induced by Stat3 during interleukin-21-driven activation and proliferation, coincident with increased NCAM1 (CD56) expression resulting in a CD56bright phenotype. Compared with control conditions, NK cells expanded in the presence of the AHR antagonist, StemRegenin-1, were unaffected in proliferation or cytotoxicity, had no increase in NCAM1 transcription, and maintained the CD56dim phenotype. However, it showed altered expression of 1004 genes including those strongly associated with signaling pathways. In contrast, NK cells expanded in the presence of the AHR agonist, kynurenine, showed decreased cytotoxicity and altered expression of 97 genes including those strongly associated with oxidative stress and cellular metabolism. By overlaying these differentially expressed genes with AHR chromatin binding, we identified 160 genes directly regulated by AHR, including hallmark AHR targets AHRR and CYP1B1 and known regulators of phenotype, development, metabolism, and function such as NCAM1, KIT, NQO1, and TXN. In summary, we define the AHR transcriptome in NK cells, propose a model of AHR and Stat3 coregulation, and identify potential pathways that may be targeted to overcome AHR-mediated immune suppression.


Subject(s)
Receptors, Aryl Hydrocarbon , Transcriptome , Cell Differentiation , Killer Cells, Natural/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction
6.
Cancers (Basel) ; 10(11)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30400618

ABSTRACT

Transforming growth factor-beta (TGFß) is a potent immunosuppressive cytokine that inhibits the anti-tumor responses of NK cells and T cells. However, the stimulation of natural killer (NK) cells with pro-inflammatory cytokines decreases NK cell sensitivity to TGFß. Herein, we sought to determine if TGFß imprinting (TGFßi) during NK cell activation and expansion would decrease NK cell sensitivity to TGFß suppression. To this end, we demonstrate that the activation of NK cells during chronic IL-2 stimulation and TGFßi potently induces NK cell hypersecretion of interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) in response to tumor targets which persists for at least one month in vitro after the removal of TGFß. TGFßi NK cell cytokine hypersecretion is induced following both cytokine and tumor activation. Further, TGFßi NK cells have a marked suppression of SMAD3 and T-bet which is associated with altered chromatin accessibility. In contrast to their heightened cytokine secretion, TGFßi NK cells downregulate several activating receptors, granzyme and perforin, and upregulate TRAIL, leading to cell-line-specific alterations in cytotoxicity. These findings may impact our understanding of how TGFß affects NK cell development and anti-tumor function.

7.
J Vis Exp ; (136)2018 06 14.
Article in English | MEDLINE | ID: mdl-29985369

ABSTRACT

CRISPR/Cas9 technology is accelerating genome engineering in many cell types, but so far, gene delivery and stable gene modification have been challenging in primary NK cells. For example, transgene delivery using lentiviral or retroviral transduction resulted in a limited yield of genetically-engineered NK cells due to substantial procedure-associated NK cell apoptosis. We describe here a DNA-free method for genome editing of human primary and expanded NK cells using Cas9 ribonucleoprotein complexes (Cas9/RNPs). This method allowed efficient knockout of the TGFBR2 and HPRT1 genes in NK cells. RT-PCR data showed a significant decrease in gene expression level, and a cytotoxicity assay of a representative cell product suggested that the RNP-modified NK cells became less sensitive to TGFß. Genetically modified cells could be expanded post-electroporation by stimulation with irradiated mbIL21-expressing feeder cells.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Genetic Therapy/methods , Immunotherapy/methods , Killer Cells, Natural/metabolism , Ribonucleoproteins/metabolism , Humans
8.
Cancer Immunol Res ; 5(10): 860-870, 2017 10.
Article in English | MEDLINE | ID: mdl-28821531

ABSTRACT

T cells expressing CD19-specific chimeric antigen receptors (CARs) with endodomains that encode a signaling domain derived from CD3ζ and CD28 or 41BB have potent antitumor activity in early-phase clinical studies for B-cell malignancies. Besides CD19-specific CARs, other approaches are actively being pursued to redirect T cells to CD19, including recombinant bispecific T-cell engager (BiTE) proteins or T cells genetically modified to express BiTEs [engager (ENG) T cells]. As BiTEs provide no costimulation, we investigated here if provision of costimulation through CD28 and 41BB enhances the effector function of CD19-ENG T cells. CD19-ENG T cells expressing CD80 and 41BBL on their cell surface (CD19-ENG.41BBL/CD80 T cells) were generated by retroviral transduction. CD19-ENG.41BBL/CD80 T cells retained their antigen specificity and had superior effector function compared with both unmodified T cells and CD19-ENG T cells expressing either CD80, 41BBL, or no costimulatory molecule, as judged by cytokine (IFNγ and IL2) production, T-cell proliferation, and their ability to sequentially kill target cells. In vivo, CD19-ENG.41BBL/CD80 T cells had superior antileukemia activity in the BV173 xenograft model, resulting in a survival advantage in comparison to CD19-ENG T cells. Thus, provision of costimulation is critical for the effector function of ENG T cells. Cancer Immunol Res; 5(10); 860-70. ©2017 AACR.


Subject(s)
CD28 Antigens/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Antigens, Neoplasm/immunology , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , CD28 Antigens/genetics , CD28 Antigens/metabolism , Cell Line, Tumor , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Gene Expression , Gene Order , Genetic Vectors/genetics , Humans , Lymphocyte Activation/genetics , Mice , Receptors, Antigen, T-Cell/genetics , Retroviridae/genetics , Xenograft Model Antitumor Assays
9.
Elife ; 62017 07 12.
Article in English | MEDLINE | ID: mdl-28699891

ABSTRACT

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.


Subject(s)
Glycosyltransferases/metabolism , Hippocampus/physiology , Neural Stem Cells/physiology , Receptors, Notch/metabolism , Signal Transduction , Animals , Cell Cycle , Cell Proliferation , Gene Expression Regulation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...