Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 121(10): 6246-6291, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33947187

ABSTRACT

Porous solids in the form of adsorbents and catalysts play a crucial role in various industrially important chemical, energy, and environmental processes. Formulating them into structured configurations is a key step toward their scale up and successful implementation at the industrial level. Additive manufacturing, also known as 3D printing, has emerged as an invaluable platform for shape engineering porous solids and fabricating scalable configurations for use in a wide variety of separation and reaction applications. However, formulating porous materials into self-standing configurations can dramatically affect their performance and consequently the efficiency of the process wherein they operate. Toward this end, various research groups around the world have investigated the formulation of porous adsorbents and catalysts into structured scaffolds with complex geometries that not only exhibit comparable or improved performance to that of their powder parents but also address the pressure drop and attrition issues of traditional configurations. In this comprehensive review, we summarize the recent advances and current challenges in the field of adsorption and catalysis to better guide the future directions in shape engineering solid materials with a better control on composition, structure, and properties of 3D-printed adsorbents and catalysts.

2.
ACS Appl Mater Interfaces ; 10(35): 29656-29666, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30095892

ABSTRACT

Hydrogen is considered as one of the most important clean and renewable energy sources for a sustainable energy future. However, its efficient and cost-effective purification still remains challenging. In this work, we report the development of novel zeolite@metal-organic framework (MOF) composites comprised of MOF-74 and zeolite-5A with core-shell structure for efficient purification of H2. The composites were synthesized hydrothermally through the addition of zeolite particles with and without carboxyl functional groups to the MOF synthesis solution. The zeolite/MOF weight ratio was varied systematically to find the optimum composition based on the adsorption performance. The formation of zeolite@MOF composites was confirmed by various characterization techniques. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over composites were measured at 25 °C to determine their equilibrium adsorption capacity. It was found that the zeolite-5A@MOF-74 with weight ratio of 5:95 exhibited a similar morphology to that of pristine MOF-74, but with higher surface area and total pore volume. Moreover, this composite showed 20-30% increase in CO2, CO, CH4, and N2 uptake than the bare MOF, which could be attributed to the formation of new mesopores at the MOF-zeolite interface. The estimated selectivity values for CO2/H2, CO/H2, CH4/H2, and N2/H2 were higher than those of the zeolite and/or MOF. Our results also indicated that surface modification of zeolite prior to composite formation does not enhance the adsorption capacities of the composites. Overall, the findings of this study suggest that the zeolite-5A@MOF-74 composites with core-shell structure are promising candidates for industrial H2 purification processes.

3.
ACS Appl Mater Interfaces ; 9(41): 35908-35916, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28952710

ABSTRACT

Metal-organic frameworks (MOFs) have shown promising performance in separation, adsorption, reaction, and storage of various industrial gases; however, their large-scale applications have been hampered by the lack of a proper strategy to formulate them into scalable gas-solid contactors. Herein, we report the fabrication of MOF monoliths using the 3D printing technique and evaluation of their adsorptive performance in CO2 removal from air. The 3D-printed MOF-74(Ni) and UTSA-16(Co) monoliths with MOF loadings as high as 80 and 85 wt %, respectively, were developed, and their physical and structural properties were characterized and compared with those of MOF powders. Our adsorption experiments showed that, upon exposure to 5000 ppm (0.5%) CO2 at 25 °C, the MOF-74(Ni) and UTSA-16(Co) monoliths can adsorb CO2 with uptake capacities of 1.35 and 1.31 mmol/g, respectively, which are 79% and 87% of the capacities of their MOF analogues under the same conditions. Furthermore, a stable performance was obtained for self-standing 3D-printed monolithic structures with relatively good adsorption kinetics. The preliminary findings reported in this investigation highlight the advantage of the robocasting (3D printing) technique for shaping MOF materials into practical configurations that are suitable for various gas separation applications.

4.
ACS Appl Mater Interfaces ; 9(8): 7489-7498, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28186400

ABSTRACT

Amine-based materials have represented themselves as a promising class of CO2 adsorbents; however, their large-scale implementation requires their formulation into suitable structures. In this study, we report formulation of aminosilica adsorbents into monolithic structures through a three-dimensional (3D) printing technique. In particular, 3D-printed monoliths were fabricated using presynthesized silica-supported tetraethylenepentamine (TEPA) and poly(ethylenimine) (PEI) adsorbents using three different approaches. In addition, a 3D-printed bare silica monolith was prepared and post-functionalized with 3-aminopropyltrimethoxysilane (APS). Characterization of the obtained monoliths indicated that aminosilica materials retained their characteristics after being extruded into 3D-printed configurations. Adsorptive performance of amine-based structured adsorbents was also investigated in CO2 capture. Our results indicated that aminosilica materials retain their structural, physical, and chemical properties in the monoliths. In addition, the aminosilica monoliths exhibited adsorptive characteristics comparable to their corresponding powders. This work highlights the importance of adsorbent materials formulations into practical contactors such as monoliths, as the scalabale technology platform, that could facilitate rapid deployment of adsorption-based CO2 capture processes on commercial scales.

5.
ACS Appl Mater Interfaces ; 8(41): 27753-27761, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27658639

ABSTRACT

Structured adsorbents, especially in the form of monolithic contactors, offer an excellent gas-solid contacting strategy for the development of practical and scalable CO2 capture technologies. In this study, the fabrication of three-dimensional (3D)-printed 13X and 5A zeolite monoliths with novel structures and their use in CO2 removal from air are reported. The physical and structural properties of these printed monoliths are evaluated and compared with their powder counterparts. Our results indicate that 3D-printed monoliths with zeolite loadings as high as 90 wt % exhibit adsorption uptake that is comparable to that of powder sorbents. The adsorption capacities of 5A and 13X monoliths were found to be 1.59 and 1.60 mmol/g, respectively, using 5000 ppm (0.5%) CO2 in nitrogen at room temperature. The dynamic CO2/N2 breakthrough experiments show relatively fast dynamics for monolithic structures. In addition, the printed zeolite monoliths show reasonably good mechanical stability that can eventually prevent attrition and dusting issues commonly encountered in traditional pellets and beads packing systems. The 3D printing technique offers an alternative, cost-effective, and facile approach to fabricate structured adsorbents with tunable structural, chemical, and mechanical properties for use in gas separation processes.

6.
ChemSusChem ; 9(10): 1166-77, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27076214

ABSTRACT

In this work, the development of novel binary and ternary oxide/Torlon hollow fiber composites comprising zirconia, titania, and silica as amine supports was demonstrated. The resulting binary (Zr-Si/PAI-HF, Ti-Si/PAI-HF) and ternary (Zr-Ti-Si/PAI-HF) composites were then functionalized with monoamine-, diamine-, and triamine-substituted trialkoxysilanes and were evaluated in CO2 capture. Although the introduction of both Zr and Ti improved the CO2 adsorption capacity relative to that with Si/PAI-HF sorbents, zirconia was found to have a more favorable effect on the CO2 adsorption performance than titania, as previously demonstrated for amine sorbents in the powder form. The Zr-Ti-Si/PAI-HF sample with an oxide content of 20 wt % was found to exhibit a relatively high CO2 capacity, that is, 1.90 mmol g(-1) at atmospheric pressure under dry conditions, owing to more favorable synergy between the metal oxides and CO2 . The ternary fiber sorbent showed improved sorption kinetics and long-term stability in cyclic adsorption/desorption runs.


Subject(s)
Carbon Dioxide/chemistry , Nanoparticles/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Zirconium/chemistry , Adsorption , Imides/chemistry , Kinetics , Nylons/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...