Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 47(7): 5101-5114, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32557173

ABSTRACT

The present study describes rumen microbiota composition and their functional profiles in Indian Surti buffaloes by metagenomic (MG) and metatranscriptomic (MT) approaches. The study compares samples from buffaloes fed three different proportion of roughages; green and dry type of roughage; and different rumen liquor fractions. Irrespective of sample, Bacteroidetes and Firmicutes were the most predominant bacterial phyla, followed by Proteobacteria, Fibrobacteres and Actinobacteria while, Prevotella, Bacteroides, Ruminococcus and Clostridium were the most abundant genera. Different proportions of taxa were observed in both MG and MT approaches indicating the differences in organisms present and organisms active in the rumen. Higher proportions of fungal taxa were observed in MT while important organisms like Fibrobacter and Butyrivibrio and abundant organisms like Bacteroides and Prevotella were underrepresented in MT data. Functionally, higher proportions of genes involved in Carbohydrate metabolism, Amino acid metabolism and Translation were observed in both data. Genes involved in Metabolism were observed to be underrepresented in MT data while, those involved in Genetic information processing were overrepresented in MT data. Further, genes involved in Carbohydrate metabolism were overexpressed compared to genes involved in Amino acid metabolism in MT data compared to MG data which had higher proportion of genes involved in Amino acid metabolism than Carbohydrate metabolism. In all significant differences were observed between both approaches, different fractions of rumen liquor (liquid and solid) and different proportions of roughage in diet.


Subject(s)
Buffaloes/microbiology , Gastrointestinal Microbiome , Metagenome , Rumen/microbiology , Transcriptome , Animals , Buffaloes/genetics , Carbohydrate Metabolism , RNA-Seq , Rumen/metabolism
2.
Funct Integr Genomics ; 19(2): 237-247, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30357583

ABSTRACT

Microbial colonisation in the forestomach of a ruminant is one of the most crucial factors in determining many of its physiological developments and digestive capabilities. The present study attempts to identify establishment pattern of microbes in relation to food, age and rumen development in the buffalo calves at every fortnight interval from birth to 6 months of age, followed by every month till animals became 1 year of age. Diversity study based on 16S rRNA gene sequencing identified rapidly changing bacterial population during initial 60 days of life, which got assemblage as rumen became physiologically mature with increasing age of animals. A lactate fermenting aerobic to facultative anaerobic genera found during initial 30 days of life were expeditiously replaced by strict anaerobic cellulolytic bacterial population with increasing age. The study confirms that initial colonisation mainly depends on the oral cavity and skin of the mother, followed by the surrounding environment and feed offered, which is reversed in order once animal gets older. Some of the well-described genera based on culture-dependent studies like Ruminococcus spp. were found to be in lesser proportion suggesting an additional role of other microbes or niche in cellulose degradation. We report the presence of Porphyromonas spp. and Mannheimia glucosidal for the first time in bovine infants.


Subject(s)
Buffaloes/microbiology , Gastrointestinal Microbiome , Metagenome , Rumen/microbiology , Animals , Male , RNA, Ribosomal, 16S/genetics , Rumen/growth & development
3.
Front Vet Sci ; 5: 176, 2018.
Article in English | MEDLINE | ID: mdl-30105228

ABSTRACT

Eimeria species parasites can cause the enteric disease coccidiosis, most notably in chickens where the economic and welfare implications are significant. Seven Eimeria species are recognized to infect chickens, although understanding of their regional occurrence, abundance, and population structure remains limited. Reports of Eimeria circulating in chickens across much of the southern hemisphere with cryptic genotypes and the capacity to escape current anticoccidial vaccines have revealed unexpected levels of complexity. Consequently, it is important to supplement validated species-specific molecular diagnostics with new genus-level tools. Here, we report the application of Illumina MiSeq deep sequencing to partial 18S rDNA amplicons generated using Eimeria genus-specific primers from chicken caecal contents collected in India. Commercial Cobb400 broiler and indigenous Kadaknath type chickens were sampled under field conditions after co-rearing (mixed type farms, n = 150 chickens for each) or separate rearing (single type farms, n = 150 each). Comparison of MiSeq results with established Internal Transcribed Spacer (ITS) and Sequence Characterised Amplified Region (SCAR) quantitative PCR assays suggest greater sensitivity for the MiSeq approach. The caecal-dwelling Eimeria tenella and E. necatrix dominated each sample set, although all seven species which infect chickens were detected. Two of the three cryptic Eimeria genotypes were detected including OTU-X and OTU-Y, the most northern report for the latter to date. Low levels of DNA representing other Eimeria species were detected, possibly representing farm-level contamination with non-replicating oocysts or Eimeria DNA, or false positives, indicating a requirement for additional validation. Next generation deep amplicon sequencing offers a valuable resource for future Eimeria studies.

4.
Microbiome ; 6(1): 115, 2018 06 23.
Article in English | MEDLINE | ID: mdl-29935540

ABSTRACT

BACKGROUND: The caecal microbiota plays a key role in chicken health and performance, influencing digestion and absorption of nutrients, and contributing to defence against colonisation by invading pathogens. Measures of productivity and resistance to pathogen colonisation are directly influenced by chicken genotype, but host driven variation in microbiome structure is also likely to exert a considerable indirect influence. METHODS: Here, we define the caecal microbiome of indigenous Indian Aseel and Kadaknath chicken breeds and compare them with the global commercial broiler Cobb400 and Ross 308 lines using 16S rDNA V3-V4 hypervariable amplicon sequencing. RESULTS: Each caecal microbiome was dominated by the genera Bacteroides, unclassified bacteria, unclassified Clostridiales, Clostridium, Alistipes, Faecalibacterium, Eubacterium and Blautia. Geographic location (a measure recognised to include variation in environmental and climatic factors, but also likely to feature varied management practices) and chicken line/breed were both found to exert significant impacts (p < 0.05) on caecal microbiome composition. Linear discriminant analysis effect size (LEfSe) revealed 42 breed-specific biomarkers in the chicken lines reared under controlled conditions at two different locations. CONCLUSION: Chicken breed-specific variation in bacterial occurrence, correlation between genera and clustering of operational taxonomic units indicate scope for quantitative genetic analysis and the possibility of selective breeding of chickens for defined enteric microbiota.


Subject(s)
Bacteria/classification , Bacteria/genetics , Cecum/microbiology , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Animals , Bacteria/isolation & purification , Base Sequence , Biodiversity , Geography , India , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Vet Res Commun ; 41(1): 67-75, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28012117

ABSTRACT

OBJECTIVE: Chicken astroviruses have been known to cause severe disease in chickens leading to increased mortality and "white chicks" condition. Here we aim to characterize the causative agent of visceral gout suspected for astrovirus infection in broiler breeder chickens. METHODS: Total RNA isolated from allantoic fluid of SPF embryo passaged with infected chicken sample was sequenced by whole genome shotgun sequencing using ion-torrent PGM platform. The sequence was analysed for the presence of coding and non-coding features, its similarity with reported isolates and epitope analysis of capsid structural protein. RESULTS: The consensus length of 7513 bp genome sequence of Indian isolate of chicken astrovirus was obtained after assembly of 14,121 high quality reads. The genome was comprised of 13 bp 5'-UTR, three open reading frames (ORFs) including ORF1a encoding serine protease, ORF1b encoding RNA dependent RNA polymerase (RdRp) and ORF2 encoding capsid protein, and 298 bp of 3'-UTR which harboured two corona virus stem loop II like "s2m" motifs and a poly A stretch of 19 nucleotides. The genetic analysis of CAstV/INDIA/ANAND/2016 suggested highest sequence similarity of 86.94% with the chicken astrovirus isolate CAstV/GA2011 followed by 84.76% with CAstV/4175 and 74.48%% with CAstV/Poland/G059/2014 isolates. The capsid structural protein of CAstV/INDIA/ANAND/2016 showed 84.67% similarity with chicken astrovirus isolate CAstV/GA2011, 81.06% with CAstV/4175 and 41.18% with CAstV/Poland/G059/2014 isolates. However, the capsid protein sequence showed high degree of sequence identity at nucleotide level (98.64-99.32%) and at amino acids level (97.74-98.69%) with reported sequences of Indian isolates suggesting their common origin and limited sequence divergence. The epitope analysis by SVMTriP identified two unique epitopes in our isolate, seven shared epitopes among Indian isolates and two shared epitopes among all isolates except Poland isolate which carried all distinct epitopes.


Subject(s)
Avastrovirus/genetics , Genome, Viral/genetics , Animals , Avastrovirus/classification , Avastrovirus/isolation & purification , Chickens , Epitopes/genetics , India , Sequence Homology, Nucleic Acid
6.
Indian J Microbiol ; 54(1): 118-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24426178

ABSTRACT

Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and other useful genes for plant growth.

7.
Indian J Microbiol ; 54(1): 120-1, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24426179

ABSTRACT

Pseudomonas spp. MR3 was isolated from the surrounding soil of pesticide manufacturing industries of Ankleshwar, Gujarat. Under laboratory conditions these microbes were able to degrade up to 500 ppm of methyl parathion within 72 h. Genome sequencing of Pseudomonas spp. MR3 was carried out inIon Torrent (PGM), next generation sequencer. The data obtained revealed 1,268 contigs with genome size of 2.99 Mb and G + C content of 60.9 %. The draft genome sequence of strain MR3 will be helpful in studying the genetic pathways involved in the degradation of several pesticides.

SELECTION OF CITATIONS
SEARCH DETAIL
...