Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(10): 9004-9030, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936323

ABSTRACT

In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.

2.
Sci Total Environ ; 826: 154056, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35231525

ABSTRACT

Fossil-fuel-based plastics have many enticing properties, but their production has resulted in significant environmental issues that require immediate attention. Despite the fact that these polymers are manmade, some bacteria can degrade and metabolise them, suggesting that biotechnologies based on the principle of plastic biodegradation could be beneficial. Among different types of plastics, polypropylene (PP), either having low or high density, is one of the most consumed plastics (18.85%). Their debasement under natural conditions is somewhat tricky. Still, their debasement under natural conditions is rather difficult slightly. However, different scientists have still made efforts by employing other microbes such as bacteria, fungi, and guts bacteria of larvae of insects to bio-deteriorate the PP plastic. Pre-irradiation techniques (ultraviolet and gamma irradiations), compatibilizers, and bio-additives (natural fibers, starch, and polylactic acid) have been found to impact percent bio-deterioration of different PP derivatives stronglythe various. The fungal and bacterial study showed that PP macro/microplastic might serve as an energy source and sole carbon during bio-degradation. Generally, gravimetric method or physical characterization techniques such as FTIR, XRD, SEM, etc., are utilized to affirm the bio-degradation of PP plastics-based materials. However, these techniques are not enough to warrant the bio-deterioration of PP. In this regard, a new technique approach that measures the amount of carbon dioxide emitted during bacterial or fungus degradation has also been discussed. In addition, further exploration is needed on novel isolates from plastisphere environments, sub-atomic strategies to describe plastic-debasing microorganisms and improve enzymatic action strategies, and omics-based innovations to speed up plastic waste bio-deterioration.


Subject(s)
Plastics , Polypropylenes , Bacteria , Biodegradation, Environmental , Microplastics , Polymers
3.
Int J Biol Macromol ; 72: 834-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25304747

ABSTRACT

Recently, biorenewable polymers from different natural resources have attracted a greater attention of the research community for different applications starting from biomedical to automotive. Lignin is the second most abundant non-food biomass next to cellulose in the category of biorenewable polymers and is abundantly available as byproduct of several industries involved in paper making, ethanol production, etc. The development of various green materials from lignin, which is most often considered as waste, is therefore of prime interest from environmental and economic points of view. Over the last few years, little studies have been made into the use of lignin as an indispensable component in the hydrogels. This article provides an overview of the research work carried out in the last few years on lignin based hydrogels. This article comprehensively reviews the potential efficacy of lignin in biopolymer based green hydrogels with particular emphasis on synthesis, characterization and applications. In this article, several examples of hydrogels synthesized using different types of lignin are discussed to illustrate the state of the art in the use of lignin.


Subject(s)
Hydrogels/chemistry , Lignin/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Hydrogels/chemical synthesis , Lignin/chemical synthesis
4.
Carbohydr Polym ; 111: 849-55, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25037424

ABSTRACT

Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior.

5.
Carbohydr Polym ; 109: 102-17, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24815407

ABSTRACT

Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.


Subject(s)
Cellulose/chemistry , Animals , Biocompatible Materials/chemistry , Carbohydrate Conformation , Green Chemistry Technology , Humans , Surface Properties
6.
Carbohydr Polym ; 104: 87-93, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24607164

ABSTRACT

In the present study, free radical induced graft-copolymerization of natural cellulosic polymers (Grewia optiva) has been carried out to develop the novel materials meant for green composites and many other applications. During the graft copolymer synthesis diverse reaction parameters that significantly affect the percentage of grafting were optimized. The structural, thermal and physico-chemical changes in the natural cellulosic polymers based graft copolymers have been ascertained with scanning electron micrography, Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and swelling studies. The swelling studies of the grafted cellulosic polymers have been carried out in different solvents to assess the possible applicability of these natural polymers. Green composites were also prepared using raw/grafted cellulosic polymers. It has been found that grafted polymers (Grewia optiva) based green composites gives better tensile properties than the parent natural cellulosic polymers based composites.


Subject(s)
Cellulose/chemistry , Polymerization , Vinyl Compounds/chemistry , Grewia/chemistry , Tensile Strength
7.
Int J Biol Macromol ; 62: 44-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23994197

ABSTRACT

Natural lignocellulosic polymers are one of the most promising biodegradable, non-toxic and eco-friendly polymeric materials which have been used to develop various products for number of applications especially in green composites. However, these cellulosic materials have certain drawbacks, like sensitivity to water and moisture, and need to be modified. So in this article, a treatment of lignocellulose biopolymers with suitable acrylate monomer was investigated. The influence of different reaction parameters on efficiency (grafting) was investigated. SEM, TGA and Fourier transform infrared spectroscopy (FT-IR) were used to study the graft copolymerization between the monomer and hydroxyl groups of lignocellulosic biopolymers. This article also discusses swelling, and chemical resistance properties of the both the grafted/ungrafted cellulosic biopolymer and their potential candidature for green composite applications.


Subject(s)
Lignin/chemistry , Polymerization , Green Chemistry Technology , Hibiscus/chemistry , Hydrogen-Ion Concentration , Solvents/chemistry , Temperature
8.
Carbohydr Polym ; 98(1): 820-8, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987417

ABSTRACT

Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability.


Subject(s)
Acrylates/chemistry , Cellulose/chemistry , Cellulose/chemical synthesis , Chemistry Techniques, Synthetic , Free Radicals/chemistry , Grewia/chemistry , Microwaves , Polymerization , Solvents/chemistry , Time Factors
9.
Int J Biol Macromol ; 61: 121-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23831536

ABSTRACT

Rising environmental awareness has resulted in a renewed interest in biological macromolecules obtained from renewable resources. So in view of technological significance of natural lignocellulosic polymers in numerous applications, the present study is an attempt to synthesize lignocellulosic polymers based graft copolymers using free radical polymerization. Different reaction conditions have been studied to synthesize the lignocellulosic graft copolymers. The graft copolymers have been characterized with scanning electron micrography (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The grafted samples have also been screened against different physico-chemical conditions to assess their applicability in different applications.


Subject(s)
Free Radicals/chemistry , Lignin/chemistry , Polymers/chemistry , Lignin/chemical synthesis , Lignin/ultrastructure , Poaceae/chemistry , Polymerization , Polymers/chemical synthesis , Solvents , Temperature
10.
Carbohydr Polym ; 97(1): 18-25, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23769511

ABSTRACT

Cellulose, a linear polysaccharide polymer with numerous glucose monosaccharide units is of enormous interest because of its applications in biosorption, biomedical, packaging, biofiltration and biocomposites. In this study, cellulose-graft-poly(butyl acrylate) copolymers were synthesized under microwave conditions. Effects of microwave radiation doses and different reaction parameters were optimized to get the optimum percentage of grafting. The dependence of optimum conditions for better physico-chemical properties of the cellulosic polymers was also determined. Fourier transform infrared spectroscopy (FT-IR) analysis was used to authenticate the chemical reaction taking place between cellulosic polymers and monomer. The thermogravimetric behavior of the raw and grafted cellulosic polymers was characterized by thermogravimetric analysis (TGA). The surface structure of the raw and grafted cellulosic polymers was analyzed through scanning electron microscopy (SEM). The graft copolymers have been found to be more moisture resistant and also showed better chemical and thermal resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...