Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 85(9): 2663-2681, 2022 May.
Article in English | MEDLINE | ID: mdl-35576260

ABSTRACT

A ternary photocatalyst composite-Silver decorated on ZnO supported with activated carbon (Ag/ZnO-AC) was investigated for the synthesis, characterization and UV assisted photocatalytic degradation of phenols and dyes present in wastewater. XPS and TEM revealed the elemental composition and formation of ternary Ag/ZnO-AC composite. Different operational parameters including the effect of calcination temperature, catalyst dose, initial concentration of pollutant and the effect of H2O2 and ethanol were studied. The photocatalytic activity was assessed for the degradation of p-Nitrophenol (PNP), o-Nitrophenol (ONP), and dye methyl orange (MO) under UV irradiation by ZnO, Ag/ZnO and Ag/ZnO-AC catalyst. The degradation for PNP, ONP and MO in presence of UV light were found to be in the order Ag/ZnO-AC>Ag/ZnO>ZnO. Improved degradation by Ag/ZnO-AC is attributed to high charge separation and greater adsorption of pollutant because of the combination of Ag and AC leading to a synergistic effect in the catalyst. Along with the high reusability, the composite catalyst Ag/ZnO-AC was found to be non-selective and cost-effective for the degradation of phenols as well as dyes. The as synthesized ternary composite Ag/ZnO-AC can be efficiently used as a photocatalyst for the degradation of recalcitrant and other deleterious contaminants present in wastewater.


Subject(s)
Environmental Pollutants , Zinc Oxide , Coloring Agents , Cost-Benefit Analysis , Hydrogen Peroxide , Phenols , Wastewater , Zinc Oxide/chemistry
2.
Environ Sci Pollut Res Int ; 29(11): 15614-15630, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34628578

ABSTRACT

Herein improved solar light-driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV-visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed ~ 3.45- and ~ 1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.


Subject(s)
Atenolol , Carbon , Catalysis , Propranolol , Titanium
3.
J Sep Sci ; 44(15): 2982-2995, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34085766

ABSTRACT

Endocrine disrupting chemicals are chemicals that interfere with any aspect of the endocrine system. Several natural and synthetic chemicals, including pesticides, have been identified as endocrine disruptors, which potentially inhibit the reproductive activity of the hormonal system. The pervasive occurrence with trace level concentrations and extensive variety are the reported characteristics of these chemicals. In this study, a dispersive liquid-liquid microextraction method coupled with gas chromatography and mass spectrometry for the determination of eight potential endocrine disruptor pesticides (Lindane, Diazinon, Fenitrothion, Malathion, Aldrin, α-Endosulfan, ß-Endosulfan, Methoxychlor) in bovine milk samples was developed. Several parameters that can influence the extraction efficiency were studied. Under optimized conditions, the calibration curves of all eight analytes presented coefficient of determination higher than 0.998 (range level of 2.0-1000 ng/mL). The limits of detection and quantification ranged from 0.90 to 5.00 ng/mL and 2.50 to 15.0 ng/mL, respectively.


Subject(s)
Endocrine Disruptors/analysis , Gas Chromatography-Mass Spectrometry/methods , Liquid Phase Microextraction/methods , Milk/chemistry , Pesticides/analysis , Animals , Cattle , Limit of Detection , Solvents/chemistry
4.
Data Brief ; 8: 1072-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27508267

ABSTRACT

In this article, synthesis procedures of preparation of copper zinc tin sulpho-selenide (CZTS x Se1-x ) alloy nanocrystals and the data acquired for the material characterization are presented. This data article is related to the research article doi: http://dx.doi.org/10.1016/j.solmat.2016.06.030 (Jadhav et al., 2016) [1]. FTIR data have been presented which helped in confirmation of adsorption of oleylamine on CZTS x Se1-x . Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) data have been presented which have been used to reveal the morphological details of the nanocrystals. The Energy dispersive X-ray analysis (EDAX) based elemental mapping data has been presented to confirm the elemental composition of nanocrystals. Procedure for the preparation of CZTS x Se1-x based working electrode for the CV measurements have been given. The summary table for the optical, electrochemical band gaps, valance and conduction band edges as a function of composition are listed for the ready reference.

5.
Water Sci Technol ; 73(8): 1927-36, 2016.
Article in English | MEDLINE | ID: mdl-27120648

ABSTRACT

Current research reports the synthesis of reduced graphene oxide (RGO)-TiO2 nanocomposite by in-situ redox method and graphene oxide by modified hummers method. The ratio of RGO and TiO2 in the composite was optimized to show best photocatalytic activity for the degradation of targeted pollutants. Optimized (1:10) RGO-TiO2 nanocomposite was characterized by various techniques viz. X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area (BET), Raman and diffuse reflectance spectroscopy (DRS) technique confirming successful formation of nanocomposite. XRD results confirm the presence of anatase phase in RGO-TiO2. Uniform dispersion of TiO2 nanoparticles on RGO could be seen from TEM images. The obtained results of (1:10) RGO-TiO2 showed five-fold and two-fold enhancement for the visible light and UV light, respectively, for the photocatalytic mineralization of methylene blue dye as compared to commercial Aeroxide P25 TiO2. The excellent photocatalytic mineralization activity of (1:10) RGO-TiO2 could be attributed to the enhanced surface area of composite as well as to its good electron sink capability. (1:10) RGO-TiO2 could be recycled easily and was found to be equally efficient even after the fourth cycle for the photocatalytic mineralization of methylene blue dye. The non-selectivity of synthesized composite was checked by the mineralization studies of oxalic acid.


Subject(s)
Graphite/chemistry , Photolysis , Titanium/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Catalysis , Light , Methylene Blue/chemistry , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanoparticles , Organic Chemicals , Oxides/chemistry , Ultraviolet Rays , X-Ray Diffraction
6.
J Nanosci Nanotechnol ; 12(2): 928-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629874

ABSTRACT

We report photocatalytic degradation studies on Navy Blue HE2R (NB) dye on significant details as a representative from the class of azo dyes using functional nanosystems specifically designed to allow a strong photocatalytic activity. A modified sol-gel route was employed to synthesize Au and gamma-Fe2O3 modified TiO2 nanoparticles (NPs) at low temperature. The attachment strategy is better because it allows clear surface of TiO2 to remain open for photo-catalysis. X-ray diffraction, Raman and UV-VIS spectroscopy studies showed the presence of gold and iron oxide phases along-with the anatase TiO2 phase. TEM studies showed TiO2 nanocomposite particles of size approximately 10-12 nm. A detailed investigation on heterogeneous photocatalytic performance for Navy Blue HE2R dye was done using the as-synthesized catalysts Au:TiO2 and gamma-Fe2O3:TiO2 in aqueous suspension under 8 W low-pressure mercury vapour lamp irradiation. Also, the photocatalytic degradation of Amranth and Orange G azo dyes were studied. The surface modified TiO2 NPs showed significantly improved photocatalytic activity as compared to pure TiO2. Exposure of the dye to the UV light in the presence of pure and gold NPs attached TiO2 catalysts caused dye degradation of about approximately 20% and approximately 80%, respectively, in the first couple of hours. In the presence of gamma-Fe2O3 NPs attached TiO2, a remarkable approximately 95% degradation of the azo dye was observed only in the first 15 min of UV exposure. The process parameters for the optimum catalytic activity are established which lead to a complete decoloration and substantial dye degradation, supported by the values of the Chemical Oxygen Demand (COD) approximately 93% and Total Organic Carbon (TOC) approximately 65% of the treated dye solution after 5 hours on the employment of the UV/Au:TiO2/H2O2 photocatalytic process.

7.
J Environ Sci Eng ; 50(4): 299-302, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19697765

ABSTRACT

Heterogeneous photocatalysis on metal oxide semiconductor particles is an advanced oxidation technology (AOT), which has been effective means of removing organic pollutants from water streams as it utilizes ultraviolet light with semiconductors acting as photocatalyst and leads to complete mineralization of pollutants to environmentally harmless compounds. In the present investigation, the photo-catalyzed degradation studies of p-Nitrophenol (PNP) were carried out in laboratory scale immersion well UV photo-reactor using semiconductor photo-catalyst TiO2 in suspension. For this purpose, low pressure 12 W mercury lamp was used and the effect of (i) time of irradiation, (ii) dose of TiO2, (iii) initial concentration of PNP and (iv) the addition of H2O2 to the system was studied to arrive at optimum process parameters for the complete degradation and decolorization of PNP. Simple UV irradiation could not achieve significant degradation of PNP. But UV+aeration+TiO2+ H2O2 combination achieved almost complete degradation of PNP. The spectrophotometric analysis showed that the rate of degradation of PNP was very fast in initial two hours and the maximum degradation was achieved in 5 hours. The degradation was found to increase in the order UV < UV + aeration < UV + aeration + TiO2 < UV + aeration + TiO2+ H2O2, and the degradation was found to be almost 100% for UV + aeration + TiO2 + H2O2, 91% for UV + aeration + TiO2, 43% for UV + aeration and only 26% for UV irradiation.


Subject(s)
Nitrophenols/chemistry , Photochemistry/methods , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Water/chemistry , Catalysis , Nitrophenols/isolation & purification , Nitrophenols/radiation effects , Oxidation-Reduction/radiation effects , Titanium/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...