Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 22(4): 848-862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38127946

ABSTRACT

Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.


Subject(s)
Gibberellins , Solanum lycopersicum , Humans , Animals , Gibberellins/metabolism , Solanum lycopersicum/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Life Cycle Stages , Gene Expression Regulation, Plant/genetics
2.
J Environ Manage ; 348: 119207, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832293

ABSTRACT

The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 µg/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Soil Pollutants , Biodegradation, Environmental , Surface-Active Agents/metabolism , Soil/chemistry , Soil Pollutants/chemistry , Hydrocarbons/metabolism , Soil Microbiology
3.
Chemosphere ; 337: 139264, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37348617

ABSTRACT

Pollution from the oil industries and refineries has worsened various environmental compartments. In this study, indigenous oil degrading bacteria were isolated from crude oil obtained from an Oil and Natural Gas Corporation (ONGC) asset in Ankleshwar, Gujarat, India. Based on 16S rRNA phylogeny, they were identified as Pseudomonas boreopolis IITR108, Microbacterium schleiferi IITR109, Pseudomonas aeruginosa IITR110, and Bacillus velezensis IITR111. The strain IITR108, IITR109, IITR110, and IITR111 showed 80-89% and 71-78% degradation of aliphatic (C8-C40) and aromatic (4-5 ring) hydrocarbons respectively in 45 d when supplemented with 3% (v/v) waste crude oil. When compared to individual bacteria, the consortium degrades 93.2% of aliphatic hydrocarbons and 85.5% of polyaromatic hydrocarbons. It was observed that the total aliphatic and aromatic content of crude oil 394,470 µg/mL and 47,050 µg/mL was reduced up to 9617.75 µg/mL and 4586 µg/mL respectively in 45 d when consortium was employed. The rate kinetics analysis revealed that the biodegradation isotherm followed first order kinetics, with a linear correlation between concentration (hydrocarbons) and time intervals. The half-life of aliphatic (C8-C40) and aromatic hydrocarbons ranged from 200 to 453 h and 459-714 h respectively. All the bacteria efficiently produced catabolic enzymes such as alkane monooxygenase, alcohol dehydrogenase, and lipase during the degradation of crude oil. These findings indicated that the bacterial consortium can be a better candidate for bioremediation and reclamation of aliphatic and aromatics hydrocarbon contaminated sites.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Soil Pollutants , Petroleum/analysis , Kinetics , Half-Life , Soil , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Hydrocarbons, Aromatic/analysis , Hydrocarbons/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Soil Pollutants/analysis
4.
Mol Neurobiol ; 60(6): 3496-3506, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36879138

ABSTRACT

Movement disorder (MD) is an important manifestation of neurologic Wilson disease (NWD), but there is a paucity of information on dopaminergic pathways. We evaluate dopamine and its receptors in patients with NWD and correlate the changes with MD and MRI changes. Twenty patients with NWD having MD were included. The severity of dystonia was assessed using BFM (Burke-Fahn-Marsden) score. The neurological severity of NWD was categorized as grades I to III based on the sum score of 5 neurological signs and activity of daily living. Dopamine concentration in plasma and CSF was measured using liquid chromatography-mass spectrometry, and D1 and D2 receptor expression at mRNA by reverse transcriptase polymerase chain reaction in patients and 20 matched controls. The median age of the patients was 15 years and 7 (35%) were females. Eighteen (90%) patients had dystonia and 2 (10%) had chorea. The CSF dopamine concentration (0.08 ± 0.02 vs 0.09 ± 0.017 pg/ml; p = 0.42) in the patients and controls was comparable, but D2 receptor expression was reduced in the patients (0.41 ± 0.13 vs 1.39 ± 1.04; p = 0.01). Plasma dopamine level correlated with BFM score (r = 0.592, p < 0.01) and D2 receptor expression with the severity of chorea (r = 0.447, p < 0.05). The neurological severity of WD correlated with plasma dopamine concentration (p = 0.006). Dopamine and its receptors were not related to MRI changes. The central nervous system dopaminergic pathway is not enhanced in NWD, which may be due to structural damage to the corpus striatum and/or substantia nigra.


Subject(s)
Chorea , Dystonia , Hepatolenticular Degeneration , Movement Disorders , Female , Humans , Adolescent , Male , Dopamine/metabolism , Hepatolenticular Degeneration/metabolism , Dystonia/metabolism , Chorea/metabolism , Receptors, Dopamine D2/metabolism , Corpus Striatum/metabolism , Receptors, Dopamine D1/metabolism , Substantia Nigra/metabolism , Carrier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...