Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38495566

ABSTRACT

Resolving the diffusion coefficient is a key element in many biological and engineering systems, including pharmacological drug transport and fluid mechanics analyses. Additionally, these systems often have spatial variation in the diffusion coefficient which must be determined, such as for injectable drug-eluting implants into heterogeneous tissues. Unfortunately, obtaining the diffusion coefficient from images in such cases is an inverse problem with only discrete data points. The development of a robust method that can work with such noisy and ill-posed datasets to accurately determine spatially-varying diffusion coefficients is of great value across a large range of disciplines. Here, we developed an inverse solver that uses physics informed neural networks (PINNs) to calculate spatially-varying diffusion coefficients from numerical and experimental image data in varying biological and engineering applications. The residual of the transient diffusion equation for a concentration field is minimized to find the diffusion coefficient. The robustness of the method as an inverse solver was tested using both numerical and experimental datasets. The predictions show good agreement with both the numerical and experimental benchmarks; an error of less than 6.31% was obtained against all numerical benchmarks, while the diffusion coefficient calculated in experimental datasets matches the appropriate ranges of other reported literature values. Our work demonstrates the potential of using PINNs to resolve spatially-varying diffusion coefficients, which may aid a wide-range of applications, such as enabling better-designed drug-eluting implants for regenerative medicine or oncology fields.

2.
Microbiologyopen ; 11(6): e1336, 2022 12.
Article in English | MEDLINE | ID: mdl-36479629

ABSTRACT

Machine learning methods can be used as robust techniques to provide invaluable information for analyzing biological samples in pharmaceutical industries, such as predicting the concentration of viral particles of interest in biological samples. Here, we utilized both convolutional neural networks (CNNs) and random forests (RFs) to predict the concentration of the samples containing measles, mumps, rubella, and varicella-zoster viruses (ProQuad®) based on Raman and absorption spectroscopy. We prepared Raman and absorption spectra data sets with known concentration values, then used the Raman and absorption signals individually and together to train RFs and CNNs. We demonstrated that both RFs and CNNs can make predictions with R2 values as high as 95%. We proposed two different networks to jointly use the Raman and absorption spectra, where our results demonstrated that concatenating the Raman and absorption data increases the prediction accuracy compared to using either Raman or absorption spectrum alone. Additionally, we further verified the advantage of using joint Raman-absorption with principal component analysis. Furthermore, our method can be extended to characterize properties other than concentration, such as the type of viral particles.


Subject(s)
Machine Learning , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...