Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187524

ABSTRACT

Colorectal cancer (CRC) is the second most deadly cancer worldwide. One key reason is the failure of therapies that target RAS proteins, which represent approximately 40% of CRC cases. Despite the recent discovery of multiple alternative signalling pathways that contribute to resistance, durable therapies remain an unmet need. Here, we use liquid chromatography/mass spectrometry (LC/MS) analyses on Drosophila CRC tumour models to identify multiple metabolites in the glucuronidation pathway-a toxin clearance pathway-as upregulated in trametinib-resistant RAS/APC/P53 ("RAP") tumours compared to trametinib-sensitive RASG12V tumours. Elevating glucuronidation was sufficient to direct trametinib resistance in RASG12V animals while, conversely, inhibiting different steps along the glucuronidation pathway strongly reversed RAP resistance to trametinib. For example, blocking an initial HDAC1-mediated deacetylation step with the FDA-approved drug vorinostat strongly suppressed trametinib resistance in Drosophila RAP tumours. We provide functional evidence that pairing oncogenic RAS with hyperactive WNT activity strongly elevates PI3K/AKT/GLUT signalling, which in turn directs elevated glucose and subsequent glucuronidation. Finally, we show that this mechanism of trametinib resistance is conserved in an KRAS/APC/TP53 mouse CRC tumour organoid model. Our observations demonstrate a key mechanism by which oncogenic RAS/WNT activity promotes increased drug clearance in CRC. The majority of targeted therapies are glucuronidated, and our results provide a specific path towards abrogating this resistance in clinical trials.

2.
Gynecol Oncol ; 159(3): 869-876, 2020 12.
Article in English | MEDLINE | ID: mdl-33032822

ABSTRACT

OBJECTIVE: Pathogenic variations in the homologous recombination (HR) gene, BRCA1 interacting protein C-terminal helicase 1 (BRIP1) increase the risk for ovarian cancer. PARP inhibitors (PARPi) exert a synthetic lethal effect in BRCA-mutated ovarian cancers. Effective HR requires cooperation between BRCA1 and BRIP1; therefore, BRIP1-incompetancy may predict vulnerability to synthetic lethality. Here we investigated the response of ovarian epithelial cells with defective BRIP1 function to PARPi, and compared these cells to those lacking BRCA1 activity. METHODS: We engineered Chinese Hamster ovarian (CHO) epithelial cells to express deficient BRIP1 or BRCA1, and exposed them to olaparib with or without carboplatin or cisplatin. We assessed cellular proliferation and survival; we calculated inhibitory concentrations and combination and reduction drug indices. RESULTS: BRIP1 and BRCA1 inactivation impedes HR activity, decreases cellular proliferation and compromises DNA damage recovery. Platinum agent exposure impairs cellular survival. Olaparib exposure alone decreases cell viability in BRCA1-deficient cells, although has no effect on BRIP1-deficient cells. Combining carboplatin or cisplatin with olaparib synergistically attenuates cellular survival, consistent with synthetic lethality. CONCLUSIONS: BRIP1-deficient ovarian epithelial cells exhibit defective HR, resulting in synthetic lethality when exposed to a platinum agent/PARPi combination. PARPi alone had no effect; this lack of effect may result from distinguishing molecular properties of BRIP1and/or consequences of genomic background. Our study identifies altered BRIP1 as a target for precision medicine-based therapies for ovarian cancers. This investigation supports consideration of the use of a platinum agent/PARPi combination in ovarian cancers depending upon genetic profile and genomic background.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Fanconi Anemia Complementation Group Proteins/genetics , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Helicases/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/genetics , CHO Cells , Carboplatin/pharmacology , Carboplatin/therapeutic use , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cricetulus , Drug Synergism , Fanconi Anemia Complementation Group Proteins/deficiency , Female , Humans , Molecular Targeted Therapy/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Precision Medicine/methods , RNA Helicases/deficiency , Recombinational DNA Repair/drug effects , Synthetic Lethal Mutations/drug effects
3.
Article in English | MEDLINE | ID: mdl-32816956

ABSTRACT

BACKGROUND: Differentiating between malignant and normal cells within tissue samples is vital for molecular profiling of cancer using advances in genomics and transcriptomics. Cell-surface markers of tumour-normal discrimination have additional value in terms of translatability to diagnostic and therapeutic strategies. In gastric cancer (GC), previous studies have identified individual genes or proteins that are upregulated in cancer. However, a systematic analysis of cell-surface markers and development of a composite panel involving multiple candidates to differentiate tumour from normal has not been previously reported. METHODS: Whole transcriptome sequencing (WTS) of GC and matched normal samples from the Singapore Gastric Cancer Consortium (SGCC) was used as a discovery cohort to identify upregulated putative cell-surface proteins. Matched WTS data from the The Cancer Genome Atlas (TCGA) was used as a validation cohort. Promising candidates from this analysis were validated orthogonally using multispectral immunohistochemistry (mIHC) with automated quantitative analysis using the Vectra platform. mIHC was performed on a tissue microarray containing matched normal, marginal and tumour tissues. The receiver-operating characteristic (ROC) curves were analysed to identify markers with the highest diagnostic validity independently and in combination. RESULTS: Analysis of putative membrane protein transcripts from the SGCC discovery cohort WTS data (n=15 matched tumour and normal pairs) identified several differentially and highly expressed candidates in tumour compared with normal tissues. After validation with TCGA data (n=29 matched tumour and normal pairs), the following proteins were selected for mIHC analysis: CEACAM5, CEACAM6, CLDN4, CLDN7, and EpCAM. These were compared with established glycoprotein markers in GC, namely CA19-9 and CA72-4. Individual ROC curves yielded the best performance for CEACAM5 (area under the ROC curve (AUC)=0.80), CEACAM6 (AUC=0.82), EpCAM (AUC=0.83), and CA72-4 (AUC=0.76). Combined multiplexed imaging of these four markers revealed improved specificity and sensitivity for detection of tumour from normal tissue (AUC of 4-plex=0.91). CONCLUSION: CEAMCAM5, CEACAM6, EpCAM, and CA72-4 form a versatile set of markers for robust discrimination of GC from adjacent normal tissue. As cell-surface markers, they are compatible with both IHC and live imaging approaches. These candidates may be exploited to improve automated identification of tumour tissue in GC.


Subject(s)
Adenocarcinoma/genetics , Exome Sequencing/methods , Membrane Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Antigens, CD/metabolism , Antigens, Tumor-Associated, Carbohydrate/metabolism , CA-19-9 Antigen/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Claudin-4/metabolism , Claudins/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Evaluation Studies as Topic , GPI-Linked Proteins/metabolism , Genomics/methods , Humans , Immunohistochemistry/methods , Membrane Proteins/metabolism , ROC Curve , Sensitivity and Specificity , Singapore , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , Up-Regulation
4.
Cancer Res ; 79(14): 3595-3607, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31138526

ABSTRACT

p53 protein, activated and stabilized by posttranslational modifications, performs its major functions by inducing DNA repair, cell-cycle arrest, or apoptosis through transcriptional activation. Here, we determined the ability of p53 protein stabilized via proteasome inhibition to perform similar functions as p53 induced by stresses such as DNA damage. Treating mice with the proteasome inhibitor bortezomib stabilized p53 in stem/progenitor cells of the intestine and stomach, in other proliferating tissues, and in intestinal tumors. Robust basal p53 mRNA levels were observed in the same compartments where p53 was stabilized. Spatial activation of p53 target genes in response to bortezomib in the small intestine demonstrated that CDKN1A and BAX were upregulated in the proliferative crypts but not in the differentiated villi of the small intestine; PUMA was specifically activated at the crypt base of p53 wild-type mice. Thus, cellular context determines the p53 transcriptional target selection. p53-dependent apoptosis was induced in Lgr5-expressing stem cells of the small intestine and high p53 transcriptional activity and apoptosis was induced in intestinal adenomas and in xenograft tumors. Bortezomib inhibited the growth of intestinal adenomas and xenograft tumors with wild-type p53, indicating the importance of p53 in the response to proteasome inhibitors in tissue homeostasis and in cancer therapy. SIGNIFICANCE: These findings show that bortezomib is less active in p53-defective tumors, yet its success in treating multiple myeloma suggests its use can be extended to p53-proficient solid tumors.


Subject(s)
Bortezomib/pharmacology , Colorectal Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Adenoma/drug therapy , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , HCT116 Cells , HT29 Cells , Humans , Intestine, Small/drug effects , Intestine, Small/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Stem Cells/drug effects , Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
5.
Acta Biomater ; 70: 35-47, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29425720

ABSTRACT

We report injectable nanoengineered hemostats for enhanced wound healing and tissue regeneration. The nanoengineered system consists of the natural polysaccharide, κ-carrageenan (κCA), loaded with synthetic two-dimensional (2D) nanosilicates. Nanoengineered hydrogels showed shear-thinning characteristics and can be injected for minimally invasive approaches. The injectable gels can be physically crosslinked in presence of monovalent ions to form mechanically strong hydrogels. By controlling the ratio between κCA and nanosilicates, compressive stiffness of crosslinked hydrogels can be modulated between 20 and 200 kPa. Despite high mechanical stiffness, nanocomposite hydrogels are highly porous with an interconnected network. The addition of nanosilicates to κCA increases protein adsorption on nanocomposite hydrogels that results in enhance cell adhesion and spreading, increase platelets binding and reduce blood clotting time. Moreover, due to presence of nanosilicates, a range of therapeutic biomacromolecules can be deliver in a sustain manner. The addition of nanosilicates significantly suppresses the release of entrap vascular endothelial growth factor (VEGF) and facilitate in vitro tissue regeneration and wound healing. Thus, this multifunctional nanocomposite hydrogel can be used as an injectable hemostat and an efficient vehicle for therapeutic delivery to facilitate tissue regeneration. STATEMENT OF SIGNIFICANCE: Hemorrhage is a leading cause of death in battlefield wounds, anastomosis hemorrhage and percutaneous intervention. Thus, there is a need for the development of novel bioactive materials to reduce the likelihood of hemorrhagic shock stemming from internal wounds. Here, we introduce an injectable hemostat from kappa-carrageenan and two-dimensional (2D) nanosilicates. Nanosilicates mechanically reinforce the hydrogels, provide enhanced physiological stability and accelerate the clotting time by two-fold. The sustained release of entrapped therapeutics due to presence of nanosilicates promotes enhanced wound healing. The multifunctional nanocomposite hydrogels could be used as an injectable hemostat for penetrating injury and percutaneous intervention during surgery.


Subject(s)
Carrageenan , Hydrogels , Mesenchymal Stem Cells/metabolism , Nanocomposites/chemistry , Wound Healing/drug effects , Carrageenan/chemistry , Carrageenan/pharmacology , Cell Adhesion/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/pathology , Vascular Endothelial Growth Factor A/biosynthesis
6.
ACS Nano ; 11(8): 7690-7696, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28745508

ABSTRACT

Our current understanding of the mechanical properties of nanostructured biomaterials is rather limited to invasive/destructive and low-throughput techniques such as atomic force microscopy, optical tweezers, and shear rheology. In this report, we demonstrate the capabilities of recently developed dual Brillouin/Raman spectroscopy to interrogate the mechanical and chemical properties of nanostructured hydrogel networks. The results obtained from Brillouin spectroscopy show an excellent correlation with the conventional uniaxial and shear mechanical testing. Moreover, it is confirmed that, unlike the macroscopic conventional mechanical measurement techniques, Brillouin spectroscopy can provide the elasticity characteristic of biomaterials at a mesoscale length, which is remarkably important for understanding complex cell-biomaterial interactions. The proposed technique experimentally demonstrated the capability of studying biomaterials in their natural environment and may facilitate future fabrication and inspection of biomaterials for various biomedical and biotechnological applications.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Tissue Engineering
7.
J Biomed Mater Res A ; 104(4): 879-88, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26650507

ABSTRACT

Nanocomposite biomaterials are extensively investigated for cell and tissue engineering applications due their unique physical, chemical and biological characteristics. Here, we investigated the mechanical, rheological, and degradation properties of photocrosslinkable and elastomeric nanocomposite hydrogels from nanohydroxyapatite (nHAp) and gelatin methacryloyl (GelMA). The addition of nHAp resulted in a significant increase in mechanical stiffness and physiological stability. Cells readily adhere and proliferate on the nanocomposite surfaces. Cyclic stretching of cells on the elastomeric nanocomposites revealed that nHAp elicited a stronger alignment response in the direction of strain. In vitro studies highlight enhanced bioactivity of nanocomposites as determined by alkaline phosphate (ALP) activity. Overall, the elastomeric and photocrosslinkable nanocomposite hydrogels can be used for minimally invasive therapy for bone regeneration.


Subject(s)
Bone Regeneration , Bone Substitutes/chemistry , Durapatite/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Nanocomposites/chemistry , Osteoblasts/cytology , Animals , Cell Adhesion , Cell Differentiation , Cell Line , Cell Movement , Cell Proliferation , Elastomers , Light , Mice , Nanocomposites/ultrastructure , Polymers/chemistry
8.
ACS Nano ; 9(3): 3109-18, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25674809

ABSTRACT

Despite bone's impressive ability to heal after traumatic injuries and fractures, a significant need still exists for developing strategies to promote healing of nonunion defects. To address this issue, we developed collagen-based hydrogels containing two-dimensional nanosilicates. Nanosilicates are ultrathin nanomaterials with a high degree of anisotropy and functionality that results in enhanced surface interactions with biological entities compared to their respective three-dimensional counterparts. The addition of nanosilicates resulted in a 4-fold increase in compressive modulus along with an increase in pore size compared to collagen-based hydrogels. In vitro evaluation indicated that the nanocomposite hydrogels are capable of promoting osteogenesis in the absence of any osteoinductive factors. A 3-fold increase in alkaline phosphatase activity and a 4-fold increase in the formation of a mineralized matrix were observed with the addition of the nanosilicates to the collagen-based hydrogels. Overall, these results demonstrate the multiple functions of nanosilicates conducive to the regeneration of bone in nonunion defects, including increased network stiffness and porosity, injectability, and enhanced mineralized matrix formation in a growth-factor-free microenvironment.


Subject(s)
Bone and Bones/cytology , Bone and Bones/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Nanocomposites/chemistry , Nanotechnology/methods , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone and Bones/physiology , Calcification, Physiologic/drug effects , Cell Adhesion/drug effects , Cell Line , Collagen/chemistry , Gelatin/chemistry , Mechanical Phenomena , Mice , Osteogenesis/drug effects , Silicates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...