Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 1(8): 2881-2890, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-36133583

ABSTRACT

We report successful synthesis of low band gap inorganic polyphosphide and TiO2 heterostructures with the aid of short-way transport reactions. Binary and ternary polyphosphides (NaP7, SnIP, and (CuI)3P12) were successfully reacted and deposited into electrochemically fabricated TiO2 nanotubes. Employing vapor phase reaction deposition, the cavities of 100 µm long TiO2 nanotubes were infiltrated; approximately 50% of the nanotube arrays were estimated to be infiltrated in the case of NaP7. Intensive characterization of the hybrid materials with techniques including SEM, FIB, HR-TEM, Raman spectroscopy, XRD, and XPS proved the successful vapor phase deposition and synthesis of the substances on and inside the nanotubes. The polyphosphide@TiO2 hybrids exhibited superior water splitting performance compared to pristine materials and were found to be more active at higher wavelengths. SnIP@TiO2 emerged to be the most active among the polyphosphide@TiO2 materials. The improved photocatalytic performance might be due to Fermi level re-alignment and a lower charge transfer resistance which facilitated better charge separation from inorganic phosphides to TiO2.

2.
Nanotechnology ; 29(5): 052001, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29214981

ABSTRACT

As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred µmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

3.
Nanotechnology ; 28(27): 274001, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28557807

ABSTRACT

This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs ∼300 nm in length and ∼40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...