Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(10): e46823, 2012.
Article in English | MEDLINE | ID: mdl-23056468

ABSTRACT

Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Homeodomain Proteins/metabolism , Transcription Factor RelA/metabolism , Tumor Suppressor Proteins/metabolism , Antibodies, Monoclonal/immunology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle Proteins/immunology , Cell Line, Tumor , Disease Progression , Disease-Free Survival , Down-Regulation/drug effects , Homeodomain Proteins/immunology , Humans , Neoplasm Invasiveness , Phosphorylation/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factor RelA/antagonists & inhibitors , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/immunology
2.
Birth Defects Res A Clin Mol Teratol ; 70(4): 163-71, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15108242

ABSTRACT

BACKGROUND: Ethanol is known to induce a wide variety of gestational anomalies, including skeletal malformations. Gestational ethanol exposure in mice has been shown to induce postaxial digit loss (ectrodactyly). How ethanol induces limb malformations is not understood. To better understand how ethanol effects limb development, we have utilized a transgenic line of mice that expresses beta-galactosidase in the apical ectodermal ridge (AER) of the limbs throughout gestation. METHODS: Pregnant female mice were injected with 2.9, 3.4, or 3.9 gm/kg ethanol at E9.3 and E9.5; embryos were isolated at E11.25, stained for beta-galactosidase activity, and evaluated for AER defects. Based upon the pattern of defects seen, expression of FGF8 in the AER and Sonic hedgehog in the postaxial mesoderm was evaluated by in situ hybridization. RESULTS: Two distinct phenotypes were seen in response to ethanol that were dose dependent. At 2.9 gm/kg ethanol, the most prevalent phenotype was a mislocalization of the AER to regions both dorsal and ventral to the midline. A higher dosage of 3.4 gm/kg ethanol did not increase the mislocalization phenotype, but resulted in a higher frequency of postaxial loss of the AER and associated mesenchymal tissue. The highest dosage utilized (3.9 gm/kg) resulted in a high frequency of both preaxial and postaxial loss of the AER. Through in situ hybridization, we found that ethanol exposure resulted in a concomitant reduction in FGF8 expression in the AER and Sonic hedgehog expression from the zone of polarizing activity (ZPA). CONCLUSIONS: We propose a model where ethanol disrupts the AER/ZPA positive feedback loop to induce postaxial malformations. Preaxial malformations seen at higher ethanol dosage suggest FGF8 as a critical target of ethanol in producing limb defects.


Subject(s)
Alcohol Drinking/adverse effects , Fibroblast Growth Factors/metabolism , Gene Expression/drug effects , Limb Deformities, Congenital/chemically induced , Trans-Activators/metabolism , Animals , Female , Fibroblast Growth Factor 8 , Hedgehog Proteins , Limb Buds/abnormalities , Limb Deformities, Congenital/metabolism , Maternal-Fetal Exchange , Mice , Pregnancy , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...