Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730821

ABSTRACT

The aim of this study is to analyze the effect of the addition of TiO2 nanoparticles (NTs) on the physical and mechanical properties, as well as the microstructural changes, of cementitious composites containing partially substituted natural aggregates (NAs) with aggregates derived from the following four recycled materials: glass (RGA), brick (RGB), blast-furnace slag (GBA), and recycled textolite waste with WEEE (waste from electrical and electronic equipment) as the primary source (RTA), in line with sustainable construction practices. The research methodology included the following phases: selection and characterization of raw materials, formulation design, experimental preparation and testing of specimens using standardized methods specific to cementitious composite mortars (including determination of apparent density in the hardened state, mechanical strength in compression, flexure, and abrasion, and water absorption by capillarity), and structural analysis using specialized techniques (scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS)). The analysis and interpretation of the results focused primarily on identifying the effects of NT addition on the composites. Results show a decrease in density resulting from replacing NAs with recycled aggregates, particularly in the case of RGB and RTA. Conversely, the introduction of TiO2 nanoparticles resulted in a slight increase in density, ranging from 0.2% for RTA to 7.4% for samples containing NAs. Additionally, the introduction of TiO2 contributes to improved compressive strength, especially in samples containing RTA, while flexural strength benefits from a 3-4% TiO2 addition in all composites. The compressive strength ranged from 35.19 to 70.13 N/mm2, while the flexural strength ranged from 8.4 to 10.47 N/mm2. The abrasion loss varied between 2.4% and 5.71%, and the water absorption coefficient varied between 0.03 and 0.37 kg/m2m0.5, the variations being influenced by both the nature of the aggregates and the amount of NTs added. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS) analysis showed that TiO2 nanoparticles are uniformly distributed in the cementitious composites, mainly forming CSH gel. TiO2 nanoparticles act as nucleating agents during early hydration, as confirmed by EDS spectra after curing.

2.
Materials (Basel) ; 15(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234304

ABSTRACT

The use of waste from industrial activities is of particular importance for environmental protection. Fly ash has a high potential in the production of construction materials. In the present study, the use of fly ash in the production of geopolymer paste and the effect of Fe2O3, MgO and molarity of NaOH solution on the mechanical strength of geopolymer paste are presented. Samples resulting from the heat treatment of the geopolymer paste were subjected to mechanical tests and SEM, EDS and XRD analyses. Samples were obtained using 6 molar and 8 molar NaOH solution with and without the addition of Fe2O3 and MgO. Samples obtained using a 6 molar NaOH solution where Fe2O3 and MgO were added had higher mechanical strengths compared to the other samples.

3.
Materials (Basel) ; 15(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955381

ABSTRACT

This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35−57%) and uniform structure. SPS was used to consolidate the specimens. The structures were characterized by scanning electron microscopy and compression tests. Energy absorption (W~7.49 MJ/m3) and energy absorption efficiency (EW < 90%) were also determined.

4.
Materials (Basel) ; 15(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744322

ABSTRACT

Our aim was to investigate the feasibility of using limestone waste resulting from stone processing for the manufacturing of fired clay bricks. Waste materials were considered as a partial replacement for clays to reduce the exploitation of natural resources and as a response to the climate neutrality commitments. The samples were prepared to have a waste content of up to 15% and were fired at a temperature of 900 °C. The chemical and mineralogical composition and the physical analysis of raw materials were investigated by using SEM-EDS and XRD diffraction. The result showed an increase in CaO in the clay mixture due to the presence of limestone, which reduced the shrinkage of the products' compressive strength, up to 55% for samples with a higher content of limestone (15 wt.%), and influenced the samples' color by making them lighter than the reference sample.

5.
Materials (Basel) ; 15(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057312

ABSTRACT

Masonry units made of clay or Autoclaved Aerated Concrete (AAC) are widely used in constructions from Romania and other countries. Masonry units with superior mechanical and thermal characteristics can improve the energy efficiency of buildings, especially when they are used as the main solutions for building envelope construction. Their production in recent years has increased vertiginously to meet the increased demand. Manufactured with diversified geometries, different mechanical and/or thermal characteristics have a high volume in the mass of the building and a major influence in their carbon footprint. Starting from the current context regarding the target imposed by the long-term strategy of built environment decarbonization, the aim of the paper is to analyze the potential of reusing mining waste in the production of masonry units. Mining waste represents the highest share of waste generated at national level and may represent a valuable resource for the construction industry, facilitating the creation of new jobs and support for economic development. This review presents the interest in integrating mining wastes in masonry unit production and the technical characteristics of the masonry units in which they have been used as raw materials in different percentages. Critical assessment framework using SWOT analysis highlights the key sustainability aspects (technical, environmental, social, economic) providing a comprehensive and systematic analysis of the advantages and disadvantages regarding the integration of mining waste as secondary raw materials into masonry units production.

6.
Materials (Basel) ; 14(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34832274

ABSTRACT

The present work examines an innovative manufacturing technique for fired clay bricks, using tuff as a secondary raw material. Samples were made of clay and tuff (0-30 wt.%) fired at 900 to 1100 °C. The chemical and mineralogical compositions and physical and thermal analyses of raw materials were investigated by using SEM-EDS, RX and DTA-TG curves. The samples were analysed from the mineralogical, technological and mechanical points of view. The result show that the tuff's presence in the clay mixtures considerably reduced the shrinkage of the product during the firing process, and the manufactured samples were of excellent quality. The compressive strength of the bricks varied from 5-35.3MPa, being influenced by the tuff content, clay matrix properties and firing temperatures. Finally, the heat demand for increasing the temperature from room to the firing temperature of the sample with 10% tuff content was 22%.

SELECTION OF CITATIONS
SEARCH DETAIL
...