Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38544036

ABSTRACT

Measurements of the vertical structure of the lower atmosphere are important to the understanding of air quality. Unmanned Aerial Systems (UASs, drones) can provide low cost, repeatable measurements of the temperature, pressure, and relative humidity. A set of inexpensive sensors controlled with an Arduino microprocessor board were tested on a UAS against a meteorology grade sensor. Two modes of operation for sampling were tested: a forward moving sampler and a vertical ascent sampler. A small particle sensor (Sensiron SPS30) was integrated and was capable of retrieving vertical aerosol distributions during an inversion event. The thermocouple-based temperature probe and the relative humidity measurement on the Bosch BME280 sensor correlated well with the meteorological sensor. The temperature and relative humidity sensors were then deployed on a rocket sounding platform. The rocket sounding system performed well up to a height of 400 m. The inexpensive sensors were found to perform adequately for low-cost development and uses in education and research.

2.
Sensors (Basel) ; 23(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37687899

ABSTRACT

Formaldehyde is a known human carcinogen and an important indoor and outdoor air pollutant. However, current strategies for formaldehyde measurement, such as chromatographic and optical techniques, are expensive and labor intensive. Low-cost gas sensors have been emerging to provide effective measurement of air pollutants. In this study, we evaluated eight low-cost electrochemical formaldehyde sensors (SFA30, Sensirion®, Staefa, Switzerland) in the laboratory with a broadband cavity-enhanced absorption spectroscopy as the reference instrument. As a group, the sensors exhibited good linearity of response (R2 > 0.95), low limit of detection (11.3 ± 2.07 ppb), good accuracy (3.96 ± 0.33 ppb and 6.2 ± 0.3% N), acceptable repeatability (3.46% averaged coefficient of variation), reasonably fast response (131-439 s) and moderate inter-sensor variability (0.551 intraclass correlation coefficient) over the formaldehyde concentration range of 0-76 ppb. We also systematically investigated the effects of temperature and relative humidity on sensor response, and the results showed that formaldehyde concentration was the most important contributor to sensor response, followed by temperature, and relative humidity. The results suggest the feasibility of using this low-cost electrochemical sensor to measure formaldehyde concentrations at relevant concentration ranges in indoor and outdoor environments.

3.
Toxics ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38250982

ABSTRACT

Glyoxal (CHOCHO) is a trace gas in the atmosphere, often used as an indicator of biogenic emissions. It is frequently compared to formaldehyde concentrations, which serve as indicators of anthropogenic emissions, to gain insights into the characteristics of the environmental source. This study employed broadband cavity-enhanced absorption spectroscopy to detect gaseous CHOCHO, methylglyoxal, and NO2. Two different detection methods are compared. Spectrograph and CCD Detection: This approach involves coupling the system to a spectrograph with a charge-coupled device (CCD) detector. It achieved a 1 min 1-σ detection limit of 2.5 × 108 molecules/cm3, or 10 parts per trillion (ppt). Methylglyoxal and NO2 achieved 1 min 1-σ detection limits of 34 ppt and 22 ppt, respectively. Interferometer and PMT Detection: In this method, an interferometer is used in conjunction with a photomultiplier tube (PMT) detector. It resulted in a 2 min 1-σ detection limit of 1.5 × 1010 molecules/cm3, or 600 ppt. The NO2 2 min 1-σ detection limit was determined to be 900 ppt. Concentrations of methylglyoxal were difficult to determine using this method, as they appeared to be below the detection limit of the instrument. This study discusses the advantages and limitations of each of these detection methods.

4.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408239

ABSTRACT

Sulfur dioxide (SO2) is an important precursor for the formation of atmospheric sulfate aerosol and acid rain. We present an instrument using Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS) for the measurement of SO2 with a minimum limit of detection of 0.75 ppbv (3-σ) using the spectral range 305.5-312 nm and an averaging time of 5 min. The instrument consists of high-reflectivity mirrors (0.9985 at 310 nm) and a deep UV light source (Light Emitting Diode). The effective absorption path length of the instrument is 610 m with a 0.966 m base length. Published reference absorption cross sections were used to fit and retrieve the SO2 concentrations and were compared to fluorescence standard measurements for SO2. The comparison was well correlated, R2 = 0.9998 with a correlation slope of 1.04. Interferences for fluorescence measurements were tested and the BBCEAS showed no interference, while ambient measurements responded similarly to standard measurement techniques.


Subject(s)
Sulfur Dioxide , Ultraviolet Rays , Aerosols , Spectrum Analysis/methods
5.
J Phys Chem A ; 119(19): 4651-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25551419

ABSTRACT

The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν < 0.5 cm(-1); Δλ < 0.01 nm). These shifts are used to investigate the selective detection of (12)C glyoxal (natural isotope abundance) and (13)C glyoxal by in situ cavity enhanced differential optical absorption spectroscopy (CE-DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information.

6.
Phys Chem Chem Phys ; 15(37): 15371-81, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23928555

ABSTRACT

The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...