Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 11(9): e1005530, 2015.
Article in English | MEDLINE | ID: mdl-26406243

ABSTRACT

The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.


Subject(s)
Genetic Association Studies , Receptors, G-Protein-Coupled/genetics , Taste Perception/genetics , Alleles , Animals , Genotype , Haplotypes , Humans , Iridoids/chemistry , Phenylthiourea/chemistry , Polymorphism, Single Nucleotide , Quassins/chemistry , Quinine/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes, Guaiane/chemistry , Taste Buds/metabolism , White People
2.
Biochem Biophys Res Commun ; 435(2): 267-73, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23632330

ABSTRACT

A complete understanding of bitterness perception requires identification of cognate bitter substances for all human bitter taste receptors (TAS2Rs). However, so far, no agonists have been identified for five of the 25 TAS2Rs, i.e., TAS2R41, TAS2R42, TAS2R45, TAS2R48 and TAS2R60. Due to substantial genetic variability several haplotypes exist for most bitter receptor genes. For some of the deorphaned TAS2Rs, haplotypes have been identified coding for proteins with severely impaired or even lacking receptor function, proposing that the use of non-functional receptor variants in previous investigations accounted for the failure to identify cognate bitter agonists for the orphan TAS2Rs. In the present report we reasoned that at least one out of the major genetically encoded TAS2R variants is functional. Therefore, we expressed the major haplotypes of the five orphan TAS2Rs in our functional assay and challenged the cells with 106 bitter compounds. Chloramphenicol was identified as agonist for TAS2R41. Further studies revealed that TAS2R41 is a 'specialist' receptor highly selective for this antibiotic. None of the other TAS2R variants responded to any of the 106 compounds, suggesting that the use of non-functional variants does not explain the failure to identify cognate agonists for the other four TAS2Rs. Probably, these TAS2Rs are highly selective for bitter substances absent in our compound library.


Subject(s)
Chloramphenicol/pharmacology , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, G-Protein-Coupled/genetics , Taste Buds/physiology , Taste/genetics , Amino Acid Sequence , Base Sequence , Humans , Molecular Sequence Data , Structure-Activity Relationship , Taste/drug effects , Taste Threshold/drug effects , Taste Threshold/physiology
3.
J Agric Food Chem ; 61(7): 1525-33, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23311874

ABSTRACT

Bitterness is a major sensory attribute of several common foods and beverages rich in polyphenol compounds. These compounds are reported as very important for health as chemopreventive compounds, but they are also known to taste bitter. In this work, the activation of the human bitter taste receptors, TAS2Rs, by six polyphenol compounds was analyzed. The compounds chosen are present in a wide range of plant-derived foods and beverages, namely, red wine, beer, tea, and chocolate. Pentagalloylglucose (PGG) is a hydrolyzable tannin, (-)-epicatechin is a precursor of condensed tannins, procyanidin dimer B3 and trimer C2 belong to the condensed tannins, and malvidin-3-glucoside and cyanidin-3-glucoside are anthocyanins. The results show that the different compounds activate different combinations of the ~25 TAS2Rs. (-)-Epicatechin activated three receptors, TAS2R4, TAS2R5, and TAS2R39, whereas only two receptors, TAS2R5 and TAS2R39, responded to PGG. In contrast, malvidin-3-glucoside and procyanidin trimer stimulated only one receptor, TAS2R7 and TAS2R5, respectively. Notably, tannins are the first natural agonists found for TAS2R5 that display high potency only toward this receptor. The catechol and/or galloyl groups appear to be important structural determinants that mediate the interaction of these polyphenolic compounds with TAS2R5. Overall, the EC(50) values obtained for the different compounds vary 100-fold, with the lowest values for PGG and malvidin-3-glucoside compounds, suggesting that they could be significant polyphenols responsible for the bitterness of fruits, vegetables, and derived products even if they are present in very low concentrations.


Subject(s)
Polyphenols/analysis , Taste Buds/physiology , Taste/physiology , Anthocyanins/analysis , Anthocyanins/chemistry , Beer/analysis , Beverages/analysis , Biflavonoids/analysis , Biflavonoids/chemistry , Cacao/chemistry , Catechin/analysis , Catechin/chemistry , Fruit/chemistry , Glucosides/analysis , Glucosides/chemistry , Humans , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/chemistry , Polyphenols/chemistry , Proanthocyanidins/analysis , Proanthocyanidins/chemistry , Tea/chemistry , Vegetables/chemistry , Wine/analysis
4.
Hum Mol Genet ; 20(17): 3437-49, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21672920

ABSTRACT

Bitter taste perception is initiated by TAS2R receptors, which respond to agonists by triggering depolarization of taste bud cells. Mutations in TAS2Rs are known to affect taste phenotypes by altering receptor function. Evidence that TAS2Rs overlap in ligand specificity suggests that they may also contribute joint effects. To explore this aspect of gustation, we examined bitter perception of saccharin and acesulfame K, widely used artificial sweeteners with aversive aftertastes. Both substances are agonists of TAS2R31 and -43, which belong to a five-member subfamily (TAS2R30-46) responsive to a diverse constellation of compounds. We analyzed sequence variation and linkage structure in the ∼140 kb genomic region encoding TAS2R30-46, taste responses to the two sweeteners in subjects, and functional characteristics of receptor alleles. Whole-gene sequences from TAS2R30-46 in 60 Caucasian subjects revealed extensive diversity including 34 missense mutations, two nonsense mutations and high-frequency copy-number variants. Thirty markers, including non-synonymous variants in all five genes, were associated (P< 0.001) with responses to saccharin and acesulfame K. However, linkage disequilibrium (LD) in the region was high (D', r(2) > 0.95). Haplotype analyses revealed that most associations were spurious, arising from LD with variants in TAS2R31. In vitro assays confirmed the functional importance of four TAS2R31 mutations, which had independent effects on receptor response. The existence of high LD spanning functionally distinct TAS2R loci predicts that bitter taste responses to many compounds will be strongly correlated even when they are mediated by different genes. Integrative approaches combining phenotypic, genetic and functional analysis will be essential in dissecting these complex relationships.


Subject(s)
Receptors, G-Protein-Coupled/genetics , Saccharin/pharmacology , Sweetening Agents/pharmacology , Taste Perception/genetics , Taste/genetics , Adult , Female , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Male , Middle Aged , Mutation, Missense , Taste Perception/drug effects , Young Adult
5.
Curr Biol ; 20(12): 1104-9, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20537538

ABSTRACT

Human bitter taste is mediated by the hTAS2R family of G protein-coupled receptors. The discovery of the hTAS2Rs enables the potential to develop specific bitter receptor antagonists that could be beneficial as chemical probes to examine the role of bitter receptor function in gustatory and nongustatory tissues. In addition, they could have widespread utility in food and beverages fortified with vitamins, antioxidants, and other nutraceuticals, because many of these have unwanted bitter aftertastes. We employed a high-throughput screening approach to discover a novel bitter receptor antagonist (GIV3727) that inhibits activation of hTAS2R31 (formerly hTAS2R44) by saccharin and acesulfame K, two common artificial sweeteners. Pharmacological analyses revealed that GIV3727 likely acts as an orthosteric, insurmountable antagonist of hTAS2R31. Surprisingly, we also found that this compound could inhibit five additional hTAS2Rs, including the closely related receptor hTAS2R43. Molecular modeling and site-directed mutagenesis studies suggest that two residues in helix 7 are important for antagonist activity in hTAS2R31 and hTAS2R43. In human sensory trials, GIV3727 significantly reduced the bitterness associated with the two sulfonamide sweeteners, indicating that hTAS2R antagonists are active in vivo. Our results demonstrate that small molecule bitter receptor antagonists can effectively reduce the bitter taste qualities of foods, beverages, and pharmaceuticals.


Subject(s)
Perception , Receptors, G-Protein-Coupled/antagonists & inhibitors , Taste , Humans
6.
Chem Senses ; 35(8): 685-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20551074

ABSTRACT

The perceived bitterness of cruciferous vegetables such as broccoli varies from person to person, but the functional underpinnings of this variation are not known. Some evidence suggests that it arises, in part, from variation in ability to perceive goitrin (5-vinyloxazolidine-2-thione), a potent antithyroid compound found naturally in crucifers. Individuals vary in ability to perceive synthetic compounds similar to goitrin, such as 6-propyl-2-thiouracil (PROP) and phenylthiocarbamide (PTC), as the result of mutations in the TAS2R38 gene, which encodes a bitter taste receptor. This suggests that taste responses to goitrin itself may be mediated by TAS2R38. To test this hypothesis, we examined the relationships between genetic variation in TAS2R38, functional variation in the encoded receptor, and threshold taste responses to goitrin, PROP, and PTC in 50 subjects. We found that threshold responses to goitrin were associated with responses to both PROP (P = 8.9 x 10(-4); r(s) = 0.46) and PTC (P = 7.5 x 10(-4); r(s) = 0.46). However, functional assays revealed that goitrin elicits a weaker response from the sensitive (PAV) allele of TAS2R38 (EC(50) = 65.0 µM) than do either PROP (EC(50) = 2.1 µM) or PTC (EC(50) = 1.1 µM) and no response at all from the insensitive (AVI) allele. Furthermore, goitrin responses were significantly associated with mutations in TAS2R38 (P = 9.3 × 10(-3)), but the same mutations accounted for a smaller proportion of variance in goitrin response (r(2) = 0.16) than for PROP (r(2) = 0.50) and PTC (r(2) = 0.57). These findings suggest that mutations in TAS2R38 play a role in shaping goitrin perception, but the majority of variance must be explained by other factors.


Subject(s)
Oxazolidinones/pharmacology , Taste/physiology , Alleles , Genotype , Humans , Phenotype , Phenylthiourea/pharmacology , Polymorphism, Single Nucleotide , Propylthiouracil/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Taste Threshold/physiology
7.
Cancer Res ; 68(23): 9746-53, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19047153

ABSTRACT

The selenoprotein gastrointestinal glutathione peroxidase 2 (GPx2) is up-regulated in a variety of cancer cells with thus far unknown consequences. Therefore, two clones of a human colon cancer cell line (HT-29) in which GPx2 was stably knocked down by small interfering RNA (siRNA; siGPx2) were used to test whether cancer-relevant processes are affected by GPx2. The capacity to grow anchorage independently in soft agar was significantly reduced in siGPx2 cells when compared with controls (i.e., HT-29 cells stably transfected with a scramble siRNA). The weight of tumors derived from siGPx2 cells injected into nude mice was lower in 9 of 10 animals. In contrast, in a wound-healing assay, wound closure was around 50% in controls and 80% in siGPx2 cells, indicating an enhanced capacity of the knockdown cells to migrate. Similarly, invasion of siGPx2 cells in a Transwell assay was significantly increased. Migration and invasion of siGPx2 cells were inhibited by celecoxib, a cyclooxygenase-2 (COX-2)-specific inhibitor, but not by alpha-tocopherol. Selenium supplementation of cell culture medium did not influence the results obtained with siGPx2 cells, showing that none of the other selenoproteins could replace GPx2 regarding the described effects. The data show that GPx2 inhibits malignant characteristics of tumor cells, such as migration and invasion, obviously by counteracting COX-2 expression but is required for the growth of transformed intestinal cells and may, therefore, facilitate tumor cell growth. The data also shed new light on the use of selenium as a chemopreventive trace element: a beneficial effect may depend on the stage of tumor development.


Subject(s)
Adenocarcinoma/enzymology , Cell Movement/physiology , Colonic Neoplasms/enzymology , Cyclooxygenase 2/physiology , Glutathione Peroxidase/physiology , Adenocarcinoma/pathology , Animals , Celecoxib , Cell Growth Processes/physiology , Colonic Neoplasms/pathology , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Glutathione Peroxidase/deficiency , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , HT29 Cells , Humans , Male , Mice , Mice, Knockout , Mice, Nude , Neoplasm Invasiveness , Pyrazoles/pharmacology , Sulfonamides/pharmacology
8.
Antioxid Redox Signal ; 10(9): 1491-500, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18479189

ABSTRACT

GPx2, the gastrointestinal glutathione peroxidase, is a selenoprotein predominantly expressed in the intestine. An anti-inflammatory and anticarcinogenic potential has been inferred from the development of colitis and intestinal cancer in GPx1 and GPx2 double knockout mice. Further, induction by Nrf2 activators classifies GPx2 as a protective enzyme. In contrast, enhanced COX-2 expression is consistently associated with inflammation. The antagonistic roles and an intriguing co-localization of GPx2 and COX-2 prompted us to investigate their possible mutual regulation. Both enzymes were upregulated in tissues of patients with colorectal cancer and colitis, and co-localized in the endoplasmic reticulum. A stable knockdown of GPx2 in HT-29 cells by siRNA resulted in a high basal and IL-1-induced expression of COX-2 and mPGES-1, enzymes required for the production of the pro-inflammatory PGE(2). Accordingly, si-GPx2 cells released high concentrations of PGE(2). Observed effects were specific for GPx2, since COX-2 and mPGES-1 expression was not affected by selenium-deprivation which resulted in the disappearance of GPx1. It is concluded that GPx2 by compartmentalized removal of hydroperoxides silences COX-2 activity and suppresses PGE(2)-dependent COX-2 expression. Thus, GPx2 may prevent undue responses to inflammatory stimuli and, in consequence, inflammation-driven initiation of carcinogenesis.


Subject(s)
Cyclooxygenase 2/genetics , Dinoprostone/biosynthesis , Glutathione Peroxidase/genetics , Intramolecular Oxidoreductases/genetics , Blotting, Western , Cell Line, Tumor , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclooxygenase 2/metabolism , Gene Expression Regulation, Neoplastic , Glutathione Peroxidase/metabolism , Humans , Immunoassay , Immunohistochemistry , Interleukin-1/pharmacology , Intramolecular Oxidoreductases/metabolism , Prostaglandin-E Synthases , RNA Interference , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...