Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(18): 4562-4565, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525047

ABSTRACT

We demonstrate an easy and controllable method for light-induced active tuning of the longitudinal surface plasmon resonance (LSPR) of gold nanorods (AuNRs) over ∼94nm. The red-shift of the LSPR can be controlled by varying the time of exposure to a 532 nm laser. The tuning is achieved by photo-induced dissolution of individual AuNRs by sodium dodecyl sulfate (SDS) under continuous illumination. The dissolution of the AuNRs increases the aspect ratio, and consequently the LSPR exhibits a gradual but large redshift. A key feature is that it is possible to selectively tune the LSPR of a specific AuNR in a group while leaving the others totally unaffected. Such controllable, light-induced, post-synthesis fine-tuning of the LSPR is useful for tailoring the plasmonic response of individual AuNRs for a wide range of applications.

2.
Langmuir ; 36(33): 9894-9899, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32787063

ABSTRACT

End-to-end dimers of gold nanorods are predicted to be excellent substrates for surface-enhanced spectroscopy. However, the synthesis of solution-stable end-to-end dimers remains challenging. We exploit the pH-dependent configurational change of polyelectrolytes to initiate and terminate the gold nanorod assembly formation to produce end-to-end linked dimers in high yield. The gold nanorods are first overcoated with a polyelectrolyte, and the end-to-end attachment is initiated by adding a thiol linker in acidic medium. The assembly formation is then terminated at the dimer stage by changing the pH of the medium by the addition of an appropriate amount of 1,4-diazabicyclo[2.2.2]octane (DABCO).The nanorod dimers synthesized here are stable in solution for a week without any additional surface encapsulation.

3.
Nanoscale Adv ; 2(7): 2688-2692, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-36132416

ABSTRACT

End-to-end assemblies of anisotropic plasmonic nanostructures with small nanogaps are of great interest as they create strong hot spots for enhancing weak fluorescence and/or scattering of molecules. Here we report the growth of dithiol-linked end-to-end assemblies of gold nanorods from dimers to large networks containing thousands of individual nanorods, directed by in situ tuning of nanorod's surface charge. Surface charge was lowered to initiate the aggregation process but was subsequently increased to achieve slow tip-specific growth over seven days to form end-to-end networks of nanorods, which were stable in solution for over one month. Furthermore, we showed that these assemblies contained strong plasmonic hot spots which enhanced the fluorescence signal of a weak emitter by 104-fold. This enhancement is approximately 10-fold larger than that obtained using a single gold nanorod and is comparable to the largest enhancement obtained using more expensive lithographically made in-plane antenna arrays.

4.
Nanoscale Adv ; 2(10): 4841-4852, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132891

ABSTRACT

Bimetallic hollow core-shell nanoparticles have gained immense attention, especially as a high-performance catalyst due to their large surface area and increased number of uncoordinated atoms. However, the synthesis of an anisotropic hollow structure with large number of uncoordinated atoms and tailored hole size remains elusive. Herein, we report the synthesis of peanut-like core-shell nanostructures consisting of Au nanorods as the core covered by the AuAg alloy shell. The AuAg shell was formed on the Au nanorod core via co-deposition of Ag and Au atoms without disturbing the Au nanorod core. Then, we controllably and selectively removed Ag atoms from the shell to create "Broken Shell Peanuts" with variable hole size between 8 ± 4 nm and 26 ± 7 nm. Further, we utilized these nanostructures with different hole size as catalysts to reduce 4-nitrophenol to 4-aminophenol where the broken shell peanut nanostructures with a hole size of 26 ± 7 nm were found to be 12 times more efficient than the solid shell peanut structures.

5.
ACS Omega ; 4(9): 13733-13739, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31497690

ABSTRACT

We show that many complex gold nanostructures such as the water chestnut, dog bone, nanobar, and octahedron, which are not easily accessible via a direct seed-growth synthesis approach, can be prepared via overgrowth of the same gold nanorods by varying pH and Ag concentrations in the growth solution. Overgrown nanostructures' shapes were determined by the rate of gold atom deposition, which is faster at higher pH. In the presence of AgNO3, codeposition of gold and silver atoms affects the shapes of overgrown nanostructures, particularly at high pH.

SELECTION OF CITATIONS
SEARCH DETAIL
...