Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1086962, 2023.
Article in English | MEDLINE | ID: mdl-36876058

ABSTRACT

Microbial fuel cells (CS-UFC) utilize waste resources containing biodegradable materials that play an essential role in green energy. MFC technology generates "carbon-neutral" bioelectricity and involves a multidisciplinary approach to microbiology. MFCs will play an important role in the harvesting of "green electricity." In this study, a single-chamber urea fuel cell is fabricated that uses these different wastewaters as fuel to generate power. Soil has been used to generate electrical power in microbial fuel cells and exhibited several potential applications to optimize the device; the urea fuel concentration is varied from 0.1 to 0.5 g/mL in a single-chamber compost soil urea fuel cell (CS-UFC). The proposed CS-UFC has a high power density and is suitable for cleaning chemical waste, such as urea, as it generates power by consuming urea-rich waste as fuel. The CS-UFC generates 12 times higher power than conventional fuel cells and exhibits size-dependent behavior. The power generation increases with a shift from the coin cell toward the bulk size. The power density of the CS-UFC is 55.26 mW/m2. This result confirmed that urea fuel significantly affects the power generation of single-chamber CS-UFC. This study aimed to reveal the effect of soil properties on the generated electric power from soil processes using waste, such as urea, urine, and industrial-rich wastewater as fuel. The proposed system is suitable for cleaning chemical waste; moreover, the proposed CS-UFC is a novel, sustainable, cheap, and eco-friendly design system for soil-based bulk-type design for large-scale urea fuel cell applications.

2.
PLoS One ; 16(8): e0256005, 2021.
Article in English | MEDLINE | ID: mdl-34407113

ABSTRACT

This study aimed to investigate the structure of two deciduous forests and assess their above-ground carbon stock in order to promote community forest management (CFM) for REDD+ opportunities in the Ban Mae Chiang Rai Lum Community Forest in northern Thailand. A systematic sampling method was used to establish twenty-five sample plots of 40 m × 40 m (0.16 ha) each that were used to survey the entire 3,925 ha area of the community forest. Cluster analysis identified two different forest types: dry dipterocarp forest and mixed deciduous forest. It was determined that the above-ground carbon stock did not vary significantly between them. An analysis of carbon sequestration in the community forest indicates that carbon stock increased under CFM from 2007 to 2018 by an estimated 28,928 t C and participation in the carbon market would have yielded approximately US $339,730.43 or US $8.66 /ha/year to the community for that 10-year period. Projections for 2028 reflect that carbon stock will experience continual growth which indicates that maintaining CFM can increase carbon sequestration and reduce CO2 emissions. However, though further growth of carbon stock in the community forest is expected into 2038, that growth would be at a lesser rate than during the preceding decade. This suggests that CFM management should address forest utilization practices with a focus on maintaining long term carbon stock growth. Additional measures to address the impact of drought conditions and to safeguard against forest fires are required to sustain tree species' growth and expansion in order to increase their carbon accumulation potential. Thailand's community forest involvement in REDD+ and participation in its international carbon market could create more economic opportunities for local communities.


Subject(s)
Carbon Sequestration , Conservation of Natural Resources/methods , Ecosystem , Forests , Trees/growth & development , Community Participation , Environmental Monitoring/methods , Humans , Thailand , Trees/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...