Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 18(6): 903-911, 2016 11.
Article in English | MEDLINE | ID: mdl-27631691

ABSTRACT

Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA.


Subject(s)
ErbB Receptors/genetics , High-Throughput Nucleotide Sequencing , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Polymerase Chain Reaction , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Biomarkers, Tumor , Codon , Exons , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Polymerase Chain Reaction/methods , Reference Values , Reproducibility of Results , Sensitivity and Specificity
3.
PLoS Pathog ; 11(9): e1005103, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352406

ABSTRACT

Recombinant interferon-alpha (IFN-α) is an approved therapy for chronic hepatitis B (CHB), but the molecular basis of treatment response remains to be determined. The woodchuck model of chronic hepatitis B virus (HBV) infection displays many characteristics of human disease and has been extensively used to evaluate antiviral therapeutics. In this study, woodchucks with chronic woodchuck hepatitis virus (WHV) infection were treated with recombinant woodchuck IFN-α (wIFN-α) or placebo (n = 12/group) for 15 weeks. Treatment with wIFN-α strongly reduced viral markers in the serum and liver in a subset of animals, with viral rebound typically being observed following cessation of treatment. To define the intrahepatic cellular and molecular characteristics of the antiviral response to wIFN-α, we characterized the transcriptional profiles of liver biopsies taken from animals (n = 8-12/group) at various times during the study. Unexpectedly, this revealed that the antiviral response to treatment did not correlate with intrahepatic induction of the majority of IFN-stimulated genes (ISGs) by wIFN-α. Instead, treatment response was associated with the induction of an NK/T cell signature in the liver, as well as an intrahepatic IFN-γ transcriptional response and elevation of liver injury biomarkers. Collectively, these data suggest that NK/T cell cytolytic and non-cytolytic mechanisms mediate the antiviral response to wIFN-α treatment. In summary, by studying recombinant IFN-α in a fully immunocompetent animal model of CHB, we determined that the immunomodulatory effects, but not the direct antiviral activity, of this pleiotropic cytokine are most closely correlated with treatment response. This has important implications for the rational design of new therapeutics for the treatment of CHB.


Subject(s)
Hepatitis B Virus, Woodchuck/immunology , Hepatitis B, Chronic/veterinary , Immunity, Cellular/drug effects , Immunologic Factors/therapeutic use , Interferon-alpha/therapeutic use , Liver/metabolism , Transcription, Genetic , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Biopsy , Dose-Response Relationship, Drug , Gene Expression Profiling , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Immunologic Factors/administration & dosage , Immunologic Factors/genetics , Immunologic Factors/metabolism , Interferon-alpha/administration & dosage , Interferon-alpha/genetics , Interferon-alpha/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Liver/immunology , Liver/pathology , Liver/virology , Male , Marmota , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Viral Load/drug effects
4.
J Hepatol ; 63(2): 329-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25772035

ABSTRACT

BACKGROUND & AIMS: Current hepatitis B virus (HBV) management is challenging as treatment with nucleos(t)ide analogues needs to be maintained indefinitely and because interferon (IFN)-α therapy is associated with considerable toxicity. Previously, we showed that linking IFNα to apolipoprotein A-I generates a molecule (IA) with distinct antiviral and immunostimulatory activities which lacks the hematological toxicity of IFNα. METHODS: Here, we analyse the antiviral potential of an adeno-associated vector encoding IFNα fused to apolipoprotein A-I (AAV-IA) in comparison to a vector encoding only IFNα (AAV-IFN) in two animal models of chronic hepadnavirus infection. RESULTS: In HBV transgenic mice, we found that both vectors induced marked reductions in serum and liver HBV DNA and in hepatic HBV RNA but AAV-IFN caused lethal pancytopenia. Woodchucks with chronic hepatitis virus (WHV) infection that were treated by intrahepatic injection of vectors encoding the woodchuck sequences (AAV-wIFN or AAV-wIA), experienced only a slight reduction of viremia which was associated with hematological toxicity and high mortality when using AAV-wIFN, while AAV-wIA was well tolerated. However, when we tested AAV-wIA or a control vector encoding woodchuck apolipoprotein A-I (AAV-wApo) in combination with entecavir, we found that AAV-wApo-treated animals exhibited an immediate rebound of viral load upon entecavir withdrawal while, in AAV-wIA-treated woodchucks, viremia and antigenemia remained at low levels for several weeks following entecavir interruption. CONCLUSIONS: Treatment with AAV-IA is safe and elicits antiviral effects in animal models with difficult to treat chronic hepadnavirus infection. AAV-IA in combination with nucleos(t)ide analogues represents a promising approach for the treatment of HBV infection in highly viremic patients.


Subject(s)
Apolipoprotein A-I/metabolism , DNA, Viral/genetics , Genetic Therapy/methods , Hepadnaviridae/genetics , Hepatitis B, Chronic/therapy , Interferon-alpha/therapeutic use , Liver/drug effects , Animals , Antiviral Agents/therapeutic use , Disease Models, Animal , Female , Genetic Vectors , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Liver/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic
5.
J Hepatol ; 62(6): 1237-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25559326

ABSTRACT

BACKGROUND & AIMS: New therapies for chronic hepatitis B (CHB) are urgently needed since current treatments rarely lead to cure. We evaluated whether the oral small molecule toll-like receptor (TLR7) agonist GS-9620 could induce durable antiviral efficacy in woodchucks chronically infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to human hepatitis B virus (HBV). METHODS: After evaluating the pharmacokinetics, pharmacodynamics and tolerability of oral GS-9620 in uninfected woodchucks, adult woodchucks chronically infected with WHV (n = 7 per group) were dosed with GS-9620 or placebo for 4 or 8 weeks with different treatment schedules. RESULTS: GS-9620 treatment induced rapid, marked and sustained reduction in serum viral DNA (mean maximal 6.2log10 reduction), and hepatic WHV DNA replicative intermediates, WHV cccDNA and WHV RNA, as well as loss of detectable serum WHV surface antigen (WHsAg). GS-9620 treatment also induced a sustained antibody response against WHsAg in a subset of animals. Strikingly, treatment reduced the incidence of hepatocellular carcinoma (HCC) from 71% in the placebo group to 8% in GS-9620-treated woodchucks with sustained viral load reduction. GS-9620 treatment was associated with reversible increases in serum liver enzymes and thrombocytopenia, and induced intrahepatic CD8(+) T cell, NK cell, B cell and interferon response transcriptional signatures. CONCLUSIONS: The data demonstrate that short duration, finite treatment with the oral TLR7 agonist GS-9620 can induce a sustained antiviral response in the woodchuck model of CHB, and support investigation of this compound as a therapeutic approach to attain a functional cure in CHB patients.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis B Virus, Woodchuck , Hepatitis B/drug therapy , Hepatitis B/immunology , Pteridines/therapeutic use , Toll-Like Receptor 7/agonists , Animals , Antiviral Agents/pharmacokinetics , DNA, Viral/blood , Disease Models, Animal , Hepatitis Antibodies/blood , Hepatitis Antigens/blood , Hepatitis B/complications , Hepatitis B Virus, Woodchuck/drug effects , Hepatitis B Virus, Woodchuck/genetics , Hepatitis B Virus, Woodchuck/isolation & purification , Humans , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/prevention & control , Male , Marmota , Pteridines/pharmacokinetics , Seroconversion/drug effects , Time Factors , Treatment Outcome
6.
Antimicrob Agents Chemother ; 56(9): 4630-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687516

ABSTRACT

We have identified four synthetic compounds (DFD-VI-15, BD-I-186, DFD-V-49, and DFD-V-66) from an amino acid-derived 1,2-benzisothiazolinone (BZT) scaffold that have reasonable MIC(50) values against a panel of fungal pathogens. These compounds have no structural similarity to existing antifungal drugs. Three of the four compounds have fungicidal activity against Candida spp., Cryptococcus neoformans, and several dermatophytes, while one is fungicidal to Aspergillus fumigatus. The kill rates of our compounds are equal to those in clinical usage. The BZT compounds remain active against azole-, polyene-, and micafungin-resistant strains of Candida spp. A genetics-based approach, along with phenotype analysis, was used to begin mode of action (MOA) studies of one of these compounds, DFD-VI-15. The genetics-based screen utilized a homozygous deletion collection of approximately 4,700 Saccharomyces cerevisiae mutants. We identified mutants that are both hypersensitive and resistant. Using FunSpec, the hypersensitive mutants and a resistant ace2 mutant clustered within a category of genes related directly or indirectly to mitochondrial functions. In Candida albicans, the functions of the Ace2p transcription factor include the regulation of glycolysis. Our model is that DFD-VI-15 targets a respiratory pathway that limits energy production. Supporting this hypothesis are phenotypic data indicating that DFD-VI-15 causes increased cell-reactive oxidants (ROS) and a decrease in mitochondrial membrane potential. Also, the same compound has activity when cells are grown in a medium containing glycerol (mitochondrial substrate) but is much less active when cells are grown anaerobically.


Subject(s)
Amino Acids/pharmacology , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Saccharomyces cerevisiae/genetics , Thiazoles/pharmacology , Transcription Factors/genetics , Amino Acids/chemical synthesis , Antifungal Agents/chemical synthesis , Arthrodermataceae/drug effects , Arthrodermataceae/growth & development , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/growth & development , Drug Resistance, Multiple, Fungal/drug effects , Fungal Proteins/metabolism , Glycerol/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Membrane Potential, Mitochondrial/drug effects , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Thiazoles/chemical synthesis , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...