Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 114(4): 1541-1555, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36562400

ABSTRACT

The high glycolytic activity of cancer cells leads to lactic acidosis (LA) in the tumor microenvironment. LA is not merely a consequence of metabolic activities but also has functional roles in metabolic reprogramming and cancer progression. Cholangiocarcinoma (CCA) cells exhibit a high dependency on glycolysis for survival and growth, but the specific effects of LA on cellular characteristics remain unknown. Here, we demonstrate that long-term LA (LLA) reprograms the metabolic phenotype of CCA cells from glycolytic to oxidative and enhances their migratory activity. In CCA cell culture, short-term LA (24 h) showed a growth inhibitory effect, while extended LA exposure for more than 2 weeks (LLA) led to enhanced cell motility. Coincidentally, LLA enhanced the respiratory capacity with an increase in mitochondrial mass. Inhibition of mitochondrial function abolished LLA-induced cell motility, suggesting that metabolic remodeling affects the phenotypic outcomes. RNA-sequencing analysis revealed that LLA upregulated genes associated with cell migration and epithelial-mesenchymal transition (EMT), including thrombospondin-1 (THBS1), which encodes a pro-EMT-secreted protein. Inhibition of THBS1 resulted in the suppression of both LLA-induced cell motility and respiratory capacity. Moreover, high THBS1 expression was associated with poor survival in patients with CCA. Collectively, our study suggests that the increased expression of THBS1 by LLA promotes phenotypic alterations, leading to CCA progression.


Subject(s)
Acidosis, Lactic , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Up-Regulation , Acidosis, Lactic/genetics , Cell Line, Tumor , Cholangiocarcinoma/pathology , Epithelial-Mesenchymal Transition/genetics , Phenotype , Cell Movement/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/pathology , Thrombospondins/genetics , Tumor Microenvironment/genetics
2.
Life Sci ; 302: 120648, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35598658

ABSTRACT

AIMS: Lactic acidosis (LA) generated in tumor microenvironment promotes tumor metastasis and drug resistance. This study aimed to demonstrate the impacts and the mechanisms of LA on aldehyde dehydrogenase1A3 (ALDH1A3) in promoting aggressiveness and gemcitabine resistance in cholangiocarcinoma (CCA) cell lines. The clinical relevance and the molecular pathway related to the upregulation of ALDH1A3 in LA cells will be revealed. MAIN METHODS: ALDH1A3 expression and its clinical significances in CCA tissues were analyzed using the GEO databases. Human CCA cell lines, KKU-213A-LA and KKU-213B-LA maintained in the LA medium were studied and compared with its parental cells cultured in normal medium. Aggressive features-proliferation, colony formation, migration, invasion, and gemcitabine response were determined. Expression of ALDH1A3, EGFR and the downstream effectors were analyzed using real-time PCR and Western blotting. KEY FINDINGS: ALDH1A3 was upregulated in patient CCA tissues and correlated with LDHA and shorter survival of CCA patients. mRNA and protein of ALDH1A3 were increased in LA cells. Attenuation of ALDH1A3 expression by siRNA significantly reduced cell proliferation, colony formation, migration, invasion, and gemcitabine resistance of LA cells, and gemcitabine resistant cells. The EGF/EGFR signaling via Erk and STAT3 was pinned to be involved in the induction of ALDH1A3 expression in LA cells. The transcriptomic analysis from TCGA dataset supported the links between LDHA, EGFR and ALDH1A3 in several tumor tissues. SIGNIFICANCE: Lactic acidosis upregulated EGFR and ALDH1A3 expression, leading to the aggressiveness of CCA cells. The EGFR/ALDH1A3 axis could be a novel therapeutic target to eradicate metastatic CCA.


Subject(s)
Acidosis, Lactic , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Aldehydes , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cholangiocarcinoma/metabolism , ErbB Receptors/genetics , Gemcitabine , Tumor Microenvironment
3.
In Vivo ; 35(1): 267-274, 2021.
Article in English | MEDLINE | ID: mdl-33402473

ABSTRACT

BACKGROUND/AIM: Glucose transporter 1 (GLUT1) has been demonstrated to be overexpressed in various cancer tissues and play a significant role on growth, metastasis, and apoptosis in cancer cells. This study aimed to reveal the clinical relevance of glucose transporter 1 (GLUT1) in carcinogenesis and progression on liver fluke-associated cholangiocarcinoma (CCA). MATERIALS AND METHODS: Expression of GLUT1 in CCA tissues from patients, as well as from a liver fluke-induced CCA hamster model, was determined using immunohistochemistry. CCA cell lines were transfected with GLUT1 siRNA and the roles of GLUT1 on cell growth as well as migration and invasion were investigated by using a clonogenic assay and Boyden chamber assays, respectively. RESULTS: GLUT1 was aberrantly expressed in hyperplastic/dysplastic bile ducts and CCA, but not in the normal bile ducts. High GLUT1 expression was significantly associated with non-papillary type, large tumor size, and short survival of patients. GLUT1 was expressed during cholangio-carcinogenesis and gradually increased with progression of histopathologic bile ducts. Silencing of GLUT1 expression significantly suppressed growth, migration, and invasion of CCA cell lines. CONCLUSION: GLUT1 plays important roles in carcinogenesis and progression of liver fluke-associated CCA. Targeting GLUT1 may be a strategy for treatment of metastasis in liver fluke-associated CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Fasciola hepatica , Opisthorchiasis , Opisthorchis , Animals , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Carcinogenesis/genetics , Cholangiocarcinoma/genetics , Cricetinae , Fasciola hepatica/genetics , Humans , Opisthorchis/genetics
4.
Biochem Biophys Res Commun ; 484(2): 409-415, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28131825

ABSTRACT

Overexpression of hexokinase 2 (HKII) has been demonstrated in various cancers. A number of in vitro and in vivo studies in several cancers show the significance of HKII in many cellular processes including proliferation, metastasis and apoptosis. However, the role of HKII in Opisthorchis viverrini (Ov) associated cholangiocarcinoma (CCA) is still unknown. In the present study, the expression and roles of HKII were determined in Ov associated CCA. The expression of HKII was investigated in 82 patients with histologically proven CCAs by immunohistochemistry. HKII was distinctively expressed in CCA tissues. It was rarely expressed in normal bile duct epithelium, but was expressed in hyperplastic/dysplastic and in 82% of CCA bile ducts. The observation was confirmed in the Ov associated hamster model. Suppression of HKII expression using siRNA significantly decreased cell proliferation, migration and invasion of CCA cell lines. Similar results were obtained using lonidamine (LND), an inhibitor of HK. LND significantly inhibited growth of 4 CCA cell lines tested in dose and time dependent fashion. Comparison the cytotoxic effects of LND and siRNA-HKII suggests the off target of LND above 100 µM. In addition, LND in non-cytotoxic doses could suppress migration and invasion of CCA cells. These results indicate the association of HKII in cholangiocarcinogenesis and progression and suggest the possibility of HKII as a therapeutic target for CCA.


Subject(s)
Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Hexokinase/antagonists & inhibitors , Animals , Bile Duct Neoplasms/enzymology , Bile Duct Neoplasms/pathology , Cell Division/drug effects , Cell Line, Tumor , Cholangiocarcinoma/enzymology , Cholangiocarcinoma/pathology , Cricetinae , Disease Progression , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Immunohistochemistry , Indazoles/pharmacology , Indazoles/therapeutic use , Opisthorchis/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...