Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e31313, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831811

ABSTRACT

Approaches aiming to recover proteins without denaturation represent attractive strategies. To accomplish this, a membrane lysis agent based on poly(styrene-alt-maleic acid) or PSMA was synthesized by photopolymerization using Irgacure® 2959 and carbon tetrabromide (CBr4) as a radical initiator and a reversible chain transfer agent, respectively. Structural elucidation of our in-house synthesized PSMA, so-called photo-PSMA, was performed by using NMR spectroscopy. The use of this photo-PSMA in soybean enzyme extraction was also demonstrated for the first time in this study. Without a severe cell rupture, energy input or any organic solvent, recovery of lipolytic enzymes directly into nanometric-sized particles was accomplished in one-step process. Due to the improved structural regularity along the photo-PSMA backbone, the most effective protective reservoir for enzyme immobilization was generated through the PSMA aggregation. Formation of such reservoir enabled soybean enzymes to be shielded from the surroundings and resolved in their full functioning state. This was convinced by the increased specific lipolytic activity to 1,950 mU/mg, significantly higher than those of sodium dodecyl sulfate (SDS) and the two commercially-available PSMA sources (1000P and 2000P). Our photo-PSMA had thus demonstrated its great potential for cell lyse application, especially for soybean hydrolase extraction.

2.
ACS Omega ; 8(23): 20937-20948, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37323417

ABSTRACT

Polymeric particles have attracted vast attention for use in various fields, especially as drug carriers and cosmetics, due to their excellent ability to protect active ingredients from the environment until reaching a target site. However, these materials are commonly produced from conventional synthetic polymers, which impose adverse effects on the environment due to their non-degradable nature, leading to waste accumulation and pollution in the ecosystem. This work aims to utilize naturally occurring Lycopodium clavatum spores to encapsulate sacha inchi oil (SIO), which contains active compounds with antioxidant activity, by applying a facile passive loading/solvent diffusion-assisted method. Sequential chemical treatments by acetone, potassium hydroxide, and phosphoric acid were employed to remove native biomolecules from the spores before encapsulation effectively. These are mild and facile processes compared to other synthetic polymeric materials. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed the clean, intact, and ready-to-use microcapsule spores. After the treatments, the structural morphology of the treated spores remained significantly unchanged compared to the untreated counterparts. With an oil/spore ratio of 0.75:1.00 (SIO@spore-0.75), high encapsulation efficiency and capacity loading values of 51.2 and 29.3%, respectively, were obtained. Using antioxidant assay (DPPH), the IC50 of SIO@spore-0.75 was 5.25 ± 3.04 mg/mL, similar to that of pure SIO (5.51 ± 0.31 mg/mL). Under pressure stimuli (1990 N/cm3, equivalent to a gentle press), a high amount of SIO was released (82%) from the microcapsules within 3 min. At an incubation time of 24 h, cytotoxicity tests showed a high cell viability of 88% at the highest concentration of the microcapsules (10 mg/mL), reflecting biocompatibility. The prepared microcapsules have a high potential for cosmetic applications, especially as functional scrub beads in facial washing products.

3.
Sci Rep ; 13(1): 2284, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759697

ABSTRACT

Alcoholysis is a promising approach for upcycling postconsumer polylactide (PLA) products into valuable constituents. In addition, an alcohol-acidolysis of PLA by multifunctional 2,2-bis(hydroxymethyl)propionic acid (DMPA) produces lactate oligomers with hydroxyl and carboxylic acid terminals. In this work, a process for sizing down commercial PLA resin to optimum medium-sized lactate oligomers is developed at a lower cost than a bottom-up synthesis from its monomer. The microwave-assisted reaction is conveniently conducted at 220-240 °C and pressure lower than 100 psi. The PLA resin was completely converted via alcohol-acidolysis reaction, with a product purification yield as high as 93%. The resulting products are characterized by FTIR, 2D-NMR, 1H-NMR, GPC, DSC, and XRD spectroscopy. The effects of PLA: DMPA feed ratios and the incorporation of 1,4-butanediol (BDO) on the structures, properties, and particle formability of the alcohol-acidolyzed products are examined. The products from a ratio of 12:1, which possessed optimum size and structures, are used to synthesize PLA-based polyurethane (PUD) by reacting with 1,6-diisocyanatohexane (HDI). The resulting PUD is employed in encapsulating lavender essential oil (LO). Without using any surfactant, stable LO-loaded nanoparticles are prepared due to the copolymer's self-stabilizability from its carboxylate groups. The effect of the polymer: LO feed ratio (1.25-3.75: 1) on the physicochemical properties of the resulting nanoparticles, e.g., colloidal stability (zeta potential > -60 mV), hydrodynamic size (300-500 nm), encapsulation efficiency (80-88%), and in vitro release, are investigated. The LO-loaded nanoparticles show non-toxicity to fibroblast cells, with an IC50 value higher than 2000 µg/mL. The products from this process have high potential as drug encapsulation templates in biomedical applications.


Subject(s)
Nanoparticles , Polyurethanes , Polyesters/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Lactates
4.
Sci Rep ; 12(1): 10906, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764674

ABSTRACT

Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (TVPT), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its TVPT, the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise "on-off" switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments.


Subject(s)
Body Temperature , Nanoparticles , Drug Delivery Systems , Porosity , Temperature
5.
Adv Drug Deliv Rev ; 174: 425-446, 2021 07.
Article in English | MEDLINE | ID: mdl-33930490

ABSTRACT

The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Magnetic Fields , Oxidation-Reduction , Polymers/chemistry , Porosity , Temperature , Tissue Engineering/methods
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117447, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31454688

ABSTRACT

Bio-degradable/bio-compatible poly(lactide-co-glycidyl methacrylate), P(LA-co-GMA), a copolymer has been synthesized. The material contains curable CC groups, which enable its self-curing and grafting reactions with other vinyl monomers. The copolymer was grafted with a pH-responsive polyacrylamide (PAAm), by UV-assisted reactions using acrylamide (AAm) and N,N'-methylene bisacrylamide monomers, and various photoinitiator systems. The original copolymer and its partially-cured counterpart were employed in the grafting reaction. Chemical structures and properties of the resulting materials were characterized. Standard quantitative analysis techniques for measurement of the grafted AAm content and the degree of CC conversion have been developed by 1H NMR and FTIR spectroscopy. FTIR offers more advantages, in terms of non-destructive analysis, ease of operation, and lower cost of analysis. The results show that the grafted products from pre-cured P(LA-co-GMA) copolymers contain higher grafted AAm contents than their uncured counterparts. The highest grafted AAm content was obtained by using benzophenone (BP) as an initiator, while camphorquinone (CQ) led to the lowest content. In contrast, the degree of CC conversion of the copolymer from the two initiator systems shows a reverse trend. These amphiphilic and pH-responsive grafted copolymers with tunable AAm contents have a high potential for use in various applications, especially in biomedical and environmental fields.


Subject(s)
Biodegradable Plastics/chemical synthesis , Polymers/chemical synthesis , Acrylic Resins/chemical synthesis , Acrylic Resins/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biodegradable Plastics/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Polyesters/chemical synthesis , Polyesters/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemical synthesis , Polymethacrylic Acids/chemistry , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...