Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 80(9): 314, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37544954

ABSTRACT

Salmonella enterica is one of the foodborne pathogens that can infect humans, spreading from one person to another by contaminated food and water. To identify the pathogenic S. enterica from the contaminated food product, culture-based and molecular identifications, drug resistance profiling, virulence and genetic traits of the strains have been used. Herein, different animal products was subjected to screen for S. enterica prevalence, pathogenic characterization and compared with clinical Salmonella isolates (human). A total of 173 isolates from animal products and 51 isolates from clinical samples were collected. S. Typhi, S. Agona and S. Ohio were predominant serovars in blood, stool and different animal products. Both, clinical [37% (n = 19/51)] and animal product-associated isolates [21% (n = 37/173)] expressed their highest resistance to nalidixic acid. Thirty-one percentage of (n = 16/51) clinical isolates and 12% (n = 21/173) animal food-associated isolates were resistant to multiple classes of antibiotics. Class 1 integrons encoded by S. Typhi, S. Infantis and S. Emek were screened for sequence analysis, the result revealed that the cassettes encoded-aminoglycoside acetyltransferase and dihydrofolate reductase enzymes. Salmonella pathogenicity island-1 encoded-hilA gene was detected most frequently in all the isolates. PFGE profile revealed the genetic traits of the isolates which were closely linked with antibiotic-resistant properties and virulent characteristics. Only S. Enteritidis, collected from different samples had clonal similarities. In summary, drug-resistant pathogenic Salmonella prevalence was observed in the animal product that could be an important alarm to consumers with the risk of enteric fever and it causes the potential risk to public health.


Subject(s)
Salmonella enterica , Animals , Humans , Salmonella enterica/genetics , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics , Salmonella , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
2.
Environ Sci Pollut Res Int ; 24(23): 19459-19464, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28730357

ABSTRACT

The present work focuses on a low-cost, simple, and green synthesis of silver nanoparticles (AgNPs) by mixing AgNO3 solution with the extract of Spirulina platensis (SP) without any chemical reducing and/or capping agents. The green synthesis of AgNPs was confirmed by the color change from colorless to yellowish brown. The biosynthesis of AgNPs was further confirmed by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), biological transmission electron microscopy (Bio-TEM), and energy dispersive X-ray analysis (EDX). The UV-vis spectroscopy results showed the surface plasmon resonance (SPR) of AgNPs around 450 nm. Bio-TEM analysis revealed that the Ag nanoparticles were well dispersed with average range of 5-50 nm. XRD results indicated that the green synthetic process produced face-centered cubic structure of AgNPs. FT-IR spectroscopy analysis showed that the bioactive molecules from the SP extract believed to be the responsible for the reduction of Ag ions. Furthermore, the synthesized AgNPs were evaluated against pathogens such as Staphylococcus sp. and Klebsiella sp. The AgNPs (1-4 mM) extensively reduced the growth rate of the pathogens.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Silver/chemistry , Spirulina/chemistry , Anti-Bacterial Agents/chemistry , Green Chemistry Technology , Klebsiella/drug effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Plant Extracts/chemistry , Silver/pharmacology , Staphylococcus/drug effects
3.
3 Biotech ; 6(2): 167, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330239

ABSTRACT

The aim of the study was to identify new sources of substrate from agro-industrial waste for protease production using Bacillus sp., a local bacteria isolated from an agro-waste dumping site. The strain was identified as Bacillus sp. BT MASC 3 by 16S rRNA sequence followed by phylogenic analysis. Response surface methodology-based Box-Behnken design (BBD) was used to optimize the variables such as pH, incubation time, coffee pulp waste (CPW) and corncob (CC) substrate concentration. The BBD design showed a reasonable adjustment of the quadratic model with the experimental data. Statistics-based contour and 3-D plots were generated to evaluate the changes in the response surface and understand the relationship between the culture conditions and the enzyme yield. The maximum yield of protease production (920 U/mL) was achieved after 60 h of incubation with 3.0 g/L of CPW and 2.0 g/L of CC at pH 8 and temperature 37 °C in this study. The molecular mass of the purified enzyme was 46 kDa. The highest activity was obtained at 50 °C and pH 9 for the purified enzymes.

SELECTION OF CITATIONS
SEARCH DETAIL
...