Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21259583

ABSTRACT

BackgroundThe transmission networks of SARS-CoV-2 in sub-Saharan Africa remain poorly understood. MethodsWe undertook phylogenetic analysis of 747 SARS-CoV-2 positive samples collected across six counties in coastal Kenya during the first two waves (March 2020 - February 2021). Viral imports and exports from the region were inferred using ancestral state reconstruction (ASR) approach. ResultsThe genomes were classified into 35 Pango lineages, six of which accounted for 79% of the sequenced infections: B.1 (49%), B.1.535 (11%), B.1.530 (6%), B.1.549 (4%), B.1.333 (4%) and B.1.1 (4%). Four identified lineages were Kenya specific. In a contemporaneous global subsample, 990 lineages were documented, 261 for Africa and 97 for Eastern Africa. ASR analysis identified >300 virus location transition events during the period, these comprising: 69 viral imports into Coastal Kenya; 93 viral exports from coastal Kenya; and 191 inter-county import/export events. Most international viral imports (58%) and exports (92%) occurred through Mombasa City, a key touristic and commercial Coastal Kenya center; and many occurred prior to June 2020, when stringent local COVID-19 restriction measures were enforced. After this period, local virus transmission dominated, and distinct local phylogenies were seen. ConclusionsOur analysis supports moving control strategies from a focus on international travel to local transmission. FundingThis work was funded by Wellcome (grant#: 220985) and the National Institute for Health Research (NIHR), project references: 17/63/and 16/136/33 using UK aid from the UK Government to support global health research, The UK Foreign, Commonwealth and Development Office.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20206730

ABSTRACT

We generated 274 SARS-CoV-2 genomes from samples collected during the early phase of the Kenyan pandemic. Phylogenetic analysis identified 8 global lineages and at least 76 independent SARS-CoV-2 introductions into Kenyan coast. The dominant B.1 lineage (European origin) accounted for 82.1% of the cases. Lineages A, B and B.4 were detected from screened individuals at the Kenya-Tanzania border or returning travellers but did not lead to established transmission. Though multiple lineages were introduced in coastal Kenya within three months following the initial confirmed case, none showed extensive local expansion other than cases characterised by lineage B.1, which accounted for 45 of the 76 introductions. We conclude that the international points of entry were important conduits of SARS-CoV-2 importations. We speculate that early public health responses prevented many introductions leading to established transmission, but nevertheless a few undetected introductions were sufficient to give rise to an established epidemic.

3.
Wellcome Open Res ; 5: 162, 2020.
Article in English | MEDLINE | ID: mdl-35330938

ABSTRACT

Background: The global COVID-19 outbreak relies on a quantitative real-time polymerase chain reaction (qRT-PCR) for the detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2), to facilitate the roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in our setting, where the supply of testing reagents is limited. Methods: Standards generated from a serially-diluted positive control and previously identified positive/negative samples were used to determine the optimal volumes of the qRT-PCR reagents and to evaluate the validity and performance of four assays: Charité Berlin and European Virus Archive - GLOBAL (EVAg) primer-probe sets, and DAAN and Beijing Genomics Institute (BGI) premixed commercial kits. A multiplex and singleplex RT-PCR kit was used with the two primer-probe sets and the recommended assay volumes of the two premixed kits were altered. Results: In comparison to the multiplex RT-PCR kit, the singleplex RT-PCR kit combined with the primer-probe sets yielded consistent cycle threshold (Ct) values across the different titrations tested. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit showed incomparable Ct values and inconsistent results between batches using the manufacturer's recommended volumes. Conclusion: We achieved a 2.5-fold and 4-fold increase in the number of tests/kit for the premixed kits and the primer-probe sets, respectively. The primer-probe set assays were reliable and consistent, and we preferred a combination of an EVAg and a Berlin target. Any inconclusive result was repeated by different individuals following the same protocol. DAAN was a consistent and reliable assay even at lower concentrations from the stated recommendations. BGI in contrast, required dilution to improve its performance and was hence an assay that was used in combination with EVAg or Berlin targets.

4.
Pan Afr Med J ; 23: 12, 2016.
Article in English | MEDLINE | ID: mdl-27200121

ABSTRACT

INTRODUCTION: Safe water for human consumption is important, but there is a limited supply. Mombasa County has water shortages making residences rely on other sources of water including boreholes and wells. Microbiological evaluation of drinking water is important to reduce exposure to water borne enteric diseases. This cross sectional study aimed at determining the frequency and characterization of Escherichia coli (E. coli) pathotypes from water samples collected from wells and boreholes in Mombasa County. METHODS: One hundred and fifty seven (157) water samples were collected from four divisions of the county and a questionnaire administered. The samples were inoculated to double strength MacConkey broth and incubated at 370C for up to 48 hours. Positive results were compared to the 3 tube McCrady MPN table. The E. coli were confirmed by Eijkman's test and antibiotic susceptibility carried out. Using polymerase chain reaction (PCR), the E. coli were characterized to establish pathotypes. RESULTS: One hundred and thirty one (n = 131; 83.4%) samples had coliform bacteria with only 79 (60.3%) samples having E. coli. Significant values (<0.05) were noted when coliforms were compared to variables with E. Coli showing no significance when compared to similar variables. E. coli (n = 77; 100%) tested were sensitive to Gentamicin, while all (n = 77; 100%) isolates were resistant to Ampicillin. PCR typed isolates as enteroinvasive E. Coli (EIEC). CONCLUSION: Findings suggest that coliforms and E. coli are major contaminants of wells and boreholes in Mombasa County. The isolates have a variety of resistant and sensitivity patterns to commonly used antibiotics.


Subject(s)
Escherichia coli/isolation & purification , Water Microbiology , Water Supply/standards , Water Wells , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Drinking Water/microbiology , Escherichia coli/drug effects , Humans , Kenya , Microbial Sensitivity Tests , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...