Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120867, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35033803

ABSTRACT

Detection of the mineral constituents in a batch of 310 samples of human urinary calculi (kidney stones-235 and bladder stones-75) combined with a semi-quantitative analysis has been presented on the basis of Fourier Transform based IR and Raman spectral measurements. Some of the observed characteristic IR and Raman bands have been proposed as 'Marker Bands' for the most reliable identification of the constituents. A detailed vibrational spectral analysis combined with a DFT level calculation for the functional groups in Calcium Oxalate Monohydrate (COM), Magnesium Ammonium Phosphate Hexahydrate (MAPH), Calcium Hydrogen Phosphate Dihydrate (CHPD), Penta-Calcium Hydroxy-Triphosphate (PCHT) and Uric Acid (UA) has been proposed. It has been shown that the identified mineral constituents as major or minor components can be deduced from the application of Lambert-Beer law of radiation absorption and results are in agreement with quantitative Spectral Data base. This simple method has the potential to be integrated into the management of Urolithiasis, a process of forming renal calculi in the kidney, bladder and/or urethra. Employment of powder XRD, TGA, SEM, TXRF and IR Imaging techniques has provided additional support for the proposed foolproof identification of the mineral constituents. Among the mineral constituents, Calcium Oxalate Monohydrate, Calcium Oxalate Dihydrate or their mixture account for 85% of the total number of samples; the remaining 15% and 5% samples contain Phosphate and Uric acid stones respectively.


Subject(s)
Kidney Calculi , Urinary Calculi , Calcium Oxalate , Humans , Kidney Calculi/diagnostic imaging , Minerals , Powders , Spectroscopy, Fourier Transform Infrared
2.
J Nanosci Nanotechnol ; 20(4): 2482-2487, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31492265

ABSTRACT

Herein, we studied the effect of nickel (Ni) doping on the properties of hydroxyapatite (HAp) nanoparticles synthesized by facile ultrasonication assisted wet chemical synthesis process. Various doping concentrations of nickel, i.e., 0.01 M, 0.05 M and 0.10 M, were used to dope into hydroxyapatite nanoparticles. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) pattern, scanning electron spectroscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, UV-Visible spectroscopy and Raman-scattering spectroscopy. The detailed structural characterizations confirmed that the crystallite sizes of the Ni-doped hydroxyapatite nanoparticles were reduced up to 53% compared to pure hydroxyapatite upon the doping of different concentrations of Ni ions. The agglomeration in the nanoparticles was also reduced by increasing the doping concentration of Ni ions. The XRD studies revealed that the average crystallite size of the synthesized Ni-doped HAp was decreased with increasing the concentration of Ni2+ ion doping and this observation was well-consistent with the SEM results. The FTIR and Raman studies well-confirmed the formation of pure HAp and Ni-doped HAp. Further, doping with Ni creates a new level of energy between the conductive band and the valence band and hence with increasing the concentration of Ni2+, the intensity in the UV-vis spectra was enhanced.

3.
JGH Open ; 3(5): 381-387, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31633042

ABSTRACT

BACKGROUND AND AIM: Regional differences in gallstone (GS) composition are well documented in the Indian subcontinent. The reasons for the same are unknown. Etiopathogenesis of GS remains elusive despite advances in instrumentation. This was an in-depth analysis of the chemical, structural, and elemental composition of GS with special reference to synchroton studies. METHODS: We used high-end sensitive analytical complementary microscopic and spectroscopic methods techniques, such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared, synchrotron X-ray fluorescence spectroscopy (SR-XRF), and 2D and 3D synchrotron microtomography (SR-µCT), to study the ultra structure and trace element composition of three major types of GS (cholesterol, mixed, and pigment). SR-XRF quantified the trace elements in GS. RESULTS: The cholesterol GS (monohydrate and anhydrate) were crystalline, with high calcium content. The pigment GS were amorphous, featureless, black, and fragile, with high calcium bilirubinate and carbonate salts. They had the highest concentration of iron (average 31.50 ppm) and copper (average 92.73 ppm), with bacterial inclusion. The mixed stones had features of both cholesterol and pigment GS with intermediate levels of copper (average 20.8 ppm) and iron (average 17.78 ppm). CONCLUSION: SR-µCT has, for the first time, provided cross-sectional computed imaging delineating the framework of GS and mineral distribution. It provided excellent mapping of cholesterol GS. SR-XRF confirmed that pigment GS had high concentrations of copper and iron with bacterial inclusions, the latter possibly serving as a nidus to the formation of these stones.

4.
J Photochem Photobiol B ; 175: 163-172, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28888169

ABSTRACT

The aim of the current study is to synthesize nanosized silicon incorporated HAp (Si-HAP) using sodium metasilicate as the silicon source. The sol-gel derived samples were further subjected to microwave irradiation. Incorporation of Si into HAp did not alter the HAp phase, as confirmed by the X-ray diffraction analysis (XRD). Moreover, variation in the lattice parameters of the Si-incorporated HAp indicates that Si is substituted into the HAp lattice. The decrease in the intensity of the peaks attributed to hydroxyl groups, which appeared in the FTIR and Raman spectra of Si-HAp, further confirms the Si substitution in HAp lattices. The silicon incorporation enhanced the nanorods length by 70%, when compared to that of pure HAp. Microwave irradiation improved the crystallinity of Si-HAp when compared to as-synthesized Si-HAp samples. As-synthesized Si-incorporated HAp sample showed an intense blue emission under UV excitation. Microwave irradiation reduced the intensity of blue emission and exhibited red shift due to the reduction of defects in the Si-HAp crystal. The morphological change from rod to spherical and ribbon-like forms was observed with an increase in silicon content. Further, Si-HAp exhibited better bioactivity and low dissolution rate. Initially there was a burst release of amoxicillin from all the samples, subsequently it followed a sustained release. The microwave-irradiated HAp showed extended period of sustained release than that of as-synthesized HAp and Si-HAp. Similarly, the microwave-irradiated Si-incorporated samples exhibited prolonged drug release, as compared to that of the as-synthesized samples. Hence, Si-HAp is rapidly synthesized by a simple and cost effective method without inducing any additional phases, as compared to the conventional sintering process. This study provides a new insight into the rapid green synthesis of Si-HAp. Si-HAp could emerge as a promising material for the bone tissue replacement and as a drug delivery system.


Subject(s)
Anti-Bacterial Agents/metabolism , Drug Carriers/chemistry , Durapatite/chemistry , Nanostructures/chemistry , Silicates/chemistry , Silicon/chemistry , Anti-Bacterial Agents/chemistry , Drug Liberation , Green Chemistry Technology , Microscopy, Electron, Scanning , Microwaves , Particle Size , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , Ultraviolet Rays
5.
J Photochem Photobiol B ; 173: 99-107, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28570910

ABSTRACT

The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Beta vulgaris/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Beta vulgaris/metabolism , Cell Line, Tumor , Green Chemistry Technology , Humans , MCF-7 Cells , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Particle Size , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
6.
Mater Sci Eng C Mater Biol Appl ; 78: 878-885, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28576062

ABSTRACT

Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy (1H and 13C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat.


Subject(s)
Gallstones/chemistry , Bilirubin , Humans , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , X-Ray Diffraction
7.
J Photochem Photobiol B ; 166: 220-231, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28012416

ABSTRACT

The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications.


Subject(s)
Drug Delivery Systems , Durapatite/chemistry , Nanocomposites/chemistry , Sepharose/chemistry , Biocompatible Materials , Carbonates/chemistry , Cell Line , Humans , Powders , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermogravimetry , X-Ray Diffraction
8.
Article in English | MEDLINE | ID: mdl-25033236

ABSTRACT

Nephrolithiasis is a common disease caused by the multifactorial components such as geographical location, bacterial infection, low urine volume, and low intake of water. This disease induces severe metabolic abnormalities in the human body. As the prevalence of this disease was high in Dharmapuri district located in Tamil Nadu, urinary stones removed from the patients pertaining to this district were collected and to identify the toxic elements present in the stones. The presence of functional groups and phases of the stones were analyzed using X-ray diffraction (XRD), Fourier transform Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The majority of stones were found to be calcium oxalate monohydrate (COM) and mixed stones having minor existence of struvite and uric acid. Hexagonal shaped COM crystals, needle shaped uric acid crystals and layered arrangement of struvite crystals in the core region were revealed by Scanning Electron Microscopy (SEM). Thermo Gravimetric Analysis (TGA) was used to determine the thermal stability and the hardness of the stone which was measured using Vickers hardness (HV). The presence of toxic elements in stones such as zirconium and mercury was identified using Energy Dispersive X-ray Spectroscopy (EDS). The EDS analysis showed higher concentration of zirconium in the core region compared to the periphery. The percentage of zirconium was relatively high compared to other toxic elements in the stones. The Vickers hardness results indicated that high HV values in the core region than the periphery and this might be due to the presence of zirconium.


Subject(s)
Urinary Calculi/chemistry , Calcium Oxalate/analysis , Hardness , Humans , India/epidemiology , Magnesium Compounds/analysis , Phosphates/analysis , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Struvite , Uric Acid/analysis , Urinary Calculi/epidemiology , X-Ray Diffraction , Zirconium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...