Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(13): 3624-3640, 2023 07.
Article in English | MEDLINE | ID: mdl-37000132

ABSTRACT

Within the Balkan Peninsula, topographic and climatic agents have promoted biodiversity and shaped the speciation history of many ectotherms. Here, we targeted an iconic European reptile, the nose-horned viper species-complex (Vipera ammodytes), and explored its spatial and temporal evolution. We (i) utilized genome-wide single nucleotide polymorphisms to infer genetic structure and build a time-calibrated species-tree, and (ii) applied species distribution modelling with niche-divergence tests among major phylogenomic clades. Geographically structured genetic diversity was found. Cycles of recurrent isolation and expansion during glacial-interglacial periods led to allopatric speciation and to secondary contacts and formation of multiple hybrid zones throughout the Balkan Peninsula. Deep divergence is still detected among populations separated by old and imminent biogeographical barriers (Pindos Mountain Range, the Cyclades islands, etc.), but in most cases speciation is incomplete. At the other end of the speciation continuum, we recognize two well-differentiated lineages, currently lacking any evidence of gene flow; one is distributed in the Northwestern Balkans and the other in the Southeastern Balkans, further expanding into Asia. Despite their split 5 million years ago, there is no evidence of ecological divergence, as speciation probably occurred in niche-pockets of analogous environments. These two lineages probably represent different species, while V. transcaucasiana does not merit species status. By comparing the genomic phylogenies to an updated mitochondrial one, we propose an evolutionary scenario that resolves all mitonuclear conflicts, according to which the history of the V. ammodytes species-complex was shaped by complex processes, including a major event of introgressive hybridization with asymmetric mitochondrial capture.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Polymorphism, Single Nucleotide/genetics , Phylogeny , Balkan Peninsula , Snakes , Genetic Speciation
2.
PLoS One ; 16(1): e0244150, 2021.
Article in English | MEDLINE | ID: mdl-33411750

ABSTRACT

Effective biodiversity conservation planning starts with genetic characterization within and among focal populations, in order to understand the likely impact of threats for ensuring the long-term viability of a species. The Wonder Gecko, Teratoscincus keyserlingii, is one of nine members of the genus. This species is distributed in Iran, Afghanistan, and Pakistan, with a small isolated population in the United Arab Emirates (UAE), where it is classified nationally as Critically Endangered. Within its Arabian range, anthropogenic activity is directly linked to the species' decline, with highly localised and severely fragmented populations. Here we describe the evolutionary history of Teratoscincus, by reconstructing its phylogenetic relationships and estimating its divergence times and ancestral biogeography. For conservation implications of T. keyserlingii we evaluate the genetic structure of the Arabian population using genomic data. This study supports the monophyly of most species and reveals considerable intraspecific variability in T. microlepis and T. keyserlingii, which necessitate broad systematic revisions. The UAE population of T. keyserlingii likely arrived from southern Iran during the Pleistocene and no internal structure was recovered within, implying a single population status. Regional conservation of T. keyserlingii requires improved land management and natural habitat restoration in the species' present distribution, and expansion of current protected areas, or establishment of new areas with suitable habitat for the species, mostly in northern Abu Dhabi Emirate.


Subject(s)
Biological Evolution , Conservation of Natural Resources , Lizards/genetics , Animals , Arabia , Biodiversity , Genomics , Geography , Phylogeny , Spatio-Temporal Analysis
3.
Curr Zool ; 66(1): 99-111, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32467710

ABSTRACT

Comparing mitochondrial and genomic phylogenies is an essential tool for investigating speciation processes, because each genome carries different inheritance properties and evolutionary characteristics. Furthermore, mitonuclear discordance may arise from ecological adaptation, historic isolation, population size changes, and sex-biased dispersal. Closely related taxa are expected to experience gene flow; however, this may not be true for insular populations or populations isolated in refugia. The four-lined snake Elaphe quatuorlineata has a fragmented distribution, separating populations of the Italian and Balkan Peninsulas, whereas several insular Aegean populations of significantly smaller body size (Cyclades island group and Skyros Island, Greece) are currently considered distinct subspecies. We constructed the species-tree phylogeny of this species utilizing genome-wide single nucleotide polymorphisms and a gene-tree based on complete cytochrome b sequences, aiming to detect convergence and discrepancies between biparentally and maternally inherited genomes. Population structuring, phylogenetic patterns and migration events among geographically defined lineages supported our hypothesis of isolation in multiple sub-refugia. Where biogeographical barriers did not restrict subsequent dispersal, extensive genetic exchange occurred between mainland Balkan populations. This process has led to the mitochondrial sweep of an ancestral mitolineage that survived only in peripheral (East Greece) and insular populations (North Cyclades and Skyros). The Central Cyclades represent an ancient lineage for both molecular markers that emerged almost 3.3 Mya. Considering their distinct morphology, insular E. quatuorlineata populations should be the future focus of an extensive sampling, especially since the mitonuclear discordance observed in this species could be related to ecological adaptations, such as the island-dwarfism phenomenon.

4.
Mitochondrial DNA B Resour ; 3(2): 1250-1251, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-33474481

ABSTRACT

The Milos viper, Macrovipera schweizeri, is an endangered viperid snake found on four Aegean islands (Greece). Its complete mitochondrial genome, the first reported for the genus Macrovipera, was assembled through next-generation sequencing. Its total length is 17,152 bp and includes 22 tRNAs, two ribosomal RNA genes, 13 protein-coding genes and two control regions, showing the typical gene-arrangement for Viperidae. Eight tRNAs and ND3 are encoded on the light strand, while all other genes are encoded on the heavy strand. A mitogenomic phylogeny that included Macrovipera schweizeri and 13 other viperid genera returned an unresolved relationship among the genera Macrovipera, Daboia and Vipera.

5.
Mol Ecol ; 26(10): 2796-2811, 2017 May.
Article in English | MEDLINE | ID: mdl-28028864

ABSTRACT

Geographically separated populations tend to be less connected by gene flow, as a result of physical or nonphysical barriers preventing dispersal, and this can lead to genetic structure. In this context, highly mobile organisms such as seabirds are interesting because the small effect of physical barriers means nonphysical ones may be relatively more important. Here, we use microsatellite and mitochondrial data to explore the genetic structure and phylogeography of Atlantic and Mediterranean populations of a European endemic seabird, the European shag, Phalacrocorax aristotelis, and identify the primary drivers of their diversification. Analyses of mitochondrial markers revealed three phylogenetic lineages grouping the North Atlantic, Spanish/Corsican and eastern Mediterranean populations, apparently arising from fragmentation during the Pleistocene followed by range expansion. These traces of historical fragmentation were also evident in the genetic structure estimated by microsatellite markers, despite significant contemporary gene flow among adjacent populations. Stronger genetic structure, probably promoted by landscape, philopatry and local adaptation, was found among distant populations and those separated by physical and ecological barriers. This study highlights the enduring effect of Pleistocene climatic changes on shag populations, especially within the Mediterranean Basin, and suggests a role for cryptic northern refugia, as well as known southern refugia, on the genetic structure of European seabirds. Finally, it outlines how contemporary ecological barriers and behavioural traits may maintain population divergence, despite long-distance dispersal triggered by extreme environmental conditions (e.g. population crashes).


Subject(s)
Birds/genetics , Genetics, Population , Phylogeny , Animals , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation , Microsatellite Repeats , Phylogeography , Sequence Analysis, DNA
6.
BMC Evol Biol ; 16: 99, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27165497

ABSTRACT

BACKGROUND: Genetic architecture of a species is a result of historical changes in population size and extent of distribution related to climatic and environmental factors and contemporary processes of dispersal and gene flow. Population-size and range contractions, expansions and shifts have a substantial effect on genetic diversity and intraspecific divergence, which is further shaped by gene-flow limiting barriers. The Balkans, as one of the most important sources of European biodiversity, is a region where many temperate species persisted during the Pleistocene glaciations and where high topographic heterogeneity offers suitable conditions for local adaptations of populations. In this study, we investigated the phylogeographical patterns and demographic histories of four species of semifossorial slow-worm lizards (genus Anguis) present in the Balkan Peninsula, and tested the relationship between genetic diversity and topographic heterogeneity of the inhabited ranges. RESULTS: We inferred phylogenetic relationships, compared genetic structure and historical demography of slow worms using nucleotide sequence variation of mitochondrial DNA. Four Anguis species with mostly parapatric distributions occur in the Balkan Peninsula. They show different levels of genetic diversity. A signature of population growth was detected in all four species but with various courses in particular populations. We found a strong correlation between genetic diversity of slow-worm populations and topographic ruggedness of the ranges (mountain systems) they inhabit. Areas with more rugged terrain harbour higher genetic diversity. CONCLUSIONS: Phylogeographical pattern of the genus Anguis in the Balkans is concordant with the refugia-within-refugia model previously proposed for both several other taxa in the region and other main European Peninsulas. While slow-worm populations from the southern refugia mostly have restricted distributions and have not dispersed much from their refugial areas, populations from the extra-Mediterranean refugia in northern parts of the Balkans have colonized vast areas of eastern, central, and western Europe. Besides climatic historical events, the heterogeneous topography of the Balkans has also played an important role in shaping genetic diversity of slow worms.


Subject(s)
Lizards/genetics , Animals , Balkan Peninsula , Biodiversity , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Flow , Phylogeny , Phylogeography , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...