Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(36): 42854-42867, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37652465

ABSTRACT

The rational design of interface materials containing carbon nanotubes (CNTs) and zeolites (zeolite-CNTs) is a promising perspective in chemical and biochemical communities because they exhibit several outstanding properties such as tunable hydrophobicity-hydrophilicity at interfaces. In this contribution, we report the fabrication of Ag-incorporated nanocrystalline BEA-carbon nanotube (CNT) composites via the one-pot inter-zeolite transformation of the micron-sized FAU-CNT composite in the presence of a Ag precursor. By varying the crystallization time, the inter-zeolite transformation mechanism was explored. Indeed, this process involves an amorphous intermediate of aluminosilicate species with a significant change of the crystal morphology in the presence of CNTs in the synthesis gel. Interestingly, the redispersion of metal particles was observed after the inter-zeolite transformation process, resulting in the high dispersion of metal nanoparticles over BEA nanocrystals. Notably, it was revealed that the Ag sites were also stabilized in the presence of CNT interfaces, leading to the availability of highly active Ag+ ions. To illustrate the beneficial aspect of designer materials, the synthesized Ag-incorporated BEA-CNT composites exhibited high antibacterial activity againstEscherichia coli due to the synergistic effect of the active Ag+ species and appropriate hydrophobic and hydrophilic properties of the hybrid material interfaces. This first example opens up perspectives of the rational design of zeolite-CNT interfaces with high metal dispersion via the inter-zeolite transformation approach for biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...