Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(18): 26773-26789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456975

ABSTRACT

In this study, CoCr layered double hydroxide material (CoCr-LDH) was prepared and used as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organics in water. The prepared CoCr-LDH material had a crystalline structure and relatively porous structure, as determined by various surface analyses. In Rhodamine B (RhB) removal, the most outstanding PMS activation ability belongs to the material with a Co:Cr molar ratio of 2:1. The removal of RhB follows pseudo-first-order kinetics (R2 > 0.99) with an activation energy of 38.23 kJ/mol and efficiency of 98% after 7 min of treatment, and the total organic carbon of the solution reduced 47.2% after 10 min. The activation and oxidation mechanisms were proposed and the RhB degradation pathways were suggested with the key contribution of O2•- and 1O2. Notably, CoCr-LDH can activate PMS over a wide pH range of 4 - 9, and apply to a wide range of organic pollutants and aqueous environments. The material has high stability and good recovery, which can be reused for 5 cycles with a stable efficiency of above 88%, suggesting a high potential for practical recalcitrant water treatment via PMS activation by heterogeneous catalysts.


Subject(s)
Peroxides , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Water Purification/methods , Rhodamines/chemistry , Kinetics , Oxidation-Reduction , Catalysis
2.
Nanotechnology ; 33(47)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35926317

ABSTRACT

A novel silver@silver chloride/carbon nanofiber (Ag@AgCl/CNF) hybrid was synthesized by electrospinning, heat treament, and subsequentin situchemical oxidation strategy. The synthesized materials were characterized using x-ray diffraction, Fourier-transform infrared, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and energy dispersive x-ray. The experimental results reveal that the electrospun AgNO3/PAN was carbonized and reduced to Ag/CNF, the Ag/CNF was then partly oxidized to form Ag@AgCl/CNF in which Ag@AgCl nanoparticles (ca. 10-20 nm in diameter) were uniformly bounded to CNFs (ca. 165 nm in diameter). The obtained Ag@AgCl/CNF was employed for Na2S2O8activation under visible light irradiation to treat Rhodamine B (RhB). A remarkable RhB removal of ca. 94.68% was achieved under optimal conditions, and the influence of various parameters on removal efficiency was studied. Quenching experiments revealed that HO•, SO4•-,1O2, and O2•-were major reactive oxygen species, in which O2•-played a pivotal role in RhB degradation. A possible mechanistic route for RhB degradation was proposed.

3.
Chemosphere ; 287(Pt 2): 132141, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34521013

ABSTRACT

In this study, cobalt ferrite coated carbon felt (CoFe2O4/CF) was synthesized by solvothermal method and applied as cathode for electro-Fenton (EF) treatment of tartrazine (TTZ) in water. The materials were characterized by SEM, XRD, FTIR, CV, and EIS to explore their physical, chemical, and electrical properties. The effects of solvothermal temperature and metal content on the TTZ removal were examined, showing that 220 °C with 2 mM of Co and 4 mM of Fe precursors were the best synthesis condition. Various influencing factors such as applied current density, pH, TTZ concentration, and electrolytes were investigated, and the optimal condition was found at 8.33 mA cm-2, pH 3, 50 mgTTZ L-1, and 50 mM of Na2SO4, respectively. By radical quenching test, , 1O2, and HO were recognized as the key reactive oxygen species and the reaction mechanism was proposed for the EF decolorization of TTZ using CoFe2O4/CF cathode. The reusability and stability test showed that the highly efficient CoFe2O4/CF cathode is very promising for practical application in wastewater treatment, especially for dyes and other recalcitrant organic compounds to improve its biodegradability.


Subject(s)
Carbon , Water Pollutants, Chemical , Carbon Fiber , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Tartrazine , Water , Water Pollutants, Chemical/analysis
4.
RSC Adv ; 11(46): 28496-28507, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478589

ABSTRACT

In this study, Mn2O3/MIL-100(Fe) composite was successfully synthesized by the hydrothermal method and applied for photocatalytic removal of rhodamine B (RhB) in water. The physical and chemical properties of the synthesized materials were characterized by XRD, FTIR, SEM, UV-visible, and BET analyses. Experimental results showed a great enhancement in the photocatalytic ability of the Mn2O3/MIL-100(Fe) composite as compared to individual Mn2O3 or MIL-100(Fe) under visible light and persulfate activation. The affecting factors such as pH, photocatalyst dose, RhB concentration, and Na2S2O8 concentration were investigated to find out the best conditions for efficient photocatalysis. By conducting a radical quenching test, all radicals of HO˙, SO4˙-, 1O2, and O2˙- were found to be important in photocatalytic decomposition. The mechanism was proposed for the enhancement of photocatalytic RhB removal via band potential calculation, charge separation, surface redox reaction, and key reactive oxidation species. With its durability, reusability, and high efficiency, the Mn2O3/MIL-100(Fe) composite emerges as a potential photocatalyst working under visible light for application in wastewater treatment.

5.
Dalton Trans ; 49(20): 6718-6729, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32369071

ABSTRACT

We report the synthesis of manganese-doped nickel cobalt oxide (Mn-doped NiCo2O4) nanoparticles (NPs) by an efficient hydrothermal and subsequent calcination route. The material exhibits a homogeneous distribution of the Mn dopant and a battery-type behavior when tested as a supercapacitor electrode material. Mn-doped NiCo2O4 NPs show an excellent specific capacity of 417 C g-1 at a scan rate of 10 mV s-1 and 204.3 C g-1 at a current density of 1 A g-1 in a standard three-electrode configuration, ca. 152-466% higher than that of pristine NiCo2O4 or MnCo2O4. In addition, Mn-doped NiCo2O4 NPs showed an excellent capacitance retention of 99% after 1000 charge-discharge cycles at a current density of 2 A g-1. The symmetric solid-state supercapacitor device assembled using this material delivered an energy density of 0.87 µW h cm-2 at a power density of 25 µW h cm-2 and 0.39 µW h cm-2 at a high power density of 500 µW h cm-2. The cost-effective synthesis and high electrochemical performance suggest that Mn-doped NiCo2O4 is a promising material for supercapacitors.

6.
RSC Adv ; 9(10): 5445-5452, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-35515949

ABSTRACT

Interfacial polymerization is an innovative technique for the fabrication of polymeric films. However, the majority of studies on interfacial polymerization has focused on liquid/liquid interfaces, and little work has been done on vapor/liquid interfaces. In this paper, we present the fabrication of free-standing polypyrrole/polyaniline (PPy/PANI) composite films by interfacial polymerization at a vapor/liquid interface using FeCl3 as an oxidant. The obtained PPy/PANI composite films were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy. It was found that the PPy/PANI composite films consist of PANI particles evenly distributed on porous PPy film. The influence of FeCl3 concentration on the morphology of the resulting composite films was investigated. The PPy/PANI composite films show an excellent Cr(vi) adsorption capacity of 256.41 mg g-1, much higher than that of PPy-based absorbents prepared from chemical and electrochemical polymerization routes. This work thus suggests a new route for the fabrication of PPy/PANI films with highly enhanced Cr(vi) adsorption capacity for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...