Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 444: 138593, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38310774

ABSTRACT

In this study, polymeric ionic liquids featuring different functional moieties were applied as sorbent coatings in direct-immersion solid-phase microextraction (DI-SPME) for the extraction of 2-methylimidazole (2-MI) and 4-methylimidazole (4-MI) from açaí-based food products followed by gas chromatography-mass spectrometry (GC-MS) analysis. The analytical method was optimized using a sequential experimental design. Variables used in GC-MS such as desorption time, as well as for SPME-DI, including extraction time, extraction temperature, incubation time of extraction, amount of NaCl in the extract, and stirring rate, were optimized. The fitness-for-purpose of the method was verified by the linearity of matrix-matched calibration curves (R2 ≥ 0.9921), adequate recoveries (81.7-89.7 %), and precision (relative standard deviations ≤11.2 %). The method was applied to twenty-five samples of açaí-based food products. 4-MI was found in four samples whereas 2-MI was not detected above the limit of detection. The method was found to be suitable for quality control analysis.


Subject(s)
Imidazoles , Ionic Liquids , Solid Phase Microextraction , Solid Phase Microextraction/methods , Ionic Liquids/chemistry , Gas Chromatography-Mass Spectrometry/methods , Polymers/chemistry , Limit of Detection
2.
J Chromatogr A ; 1719: 464740, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38401373

ABSTRACT

Desktop 3D printers that operate by the fused deposition modeling (FDM) mechanism are known to release numerous hazardous volatile organic compounds (VOCs) during printing, including some with potential carcinogenic effects. Operating in a similar manner to FDM 3D printers, 3D pens have gained popularity recently from their ability to allow users to effortlessly draw in the air or create various 3D printed shapes while handling the device like a pen. In contrast to numerous modern 3D printers, 3D pens lack their own ventilation systems and are often used in settings with minimum airflow. Their operation makes users more vulnerable to VOC emissions, as the released VOCs are likely to be in the breathing zone. Consequently, monitoring VOCs released during the use of 3D pens is crucial. In this study, VOCs liberated while extruding acrylonitrile butadiene styrene (ABS) filaments from a 3D pen were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME was investigated using the traditional fiber and Arrow geometries with the DVB/Carbon WR/PDMS sorbent while four different brands of ABS filaments-Amazon Basics, Gizmodork, Mynt 3D, and Novamaker-were used with the 3D pen. Heatmap analysis showed differentiation among these brands based on the liberated VOCs. The nozzle temperature and printing speed were found to affect the number and amount of released VOCs. This study goes a step further and presents for the first time a comparison between 3D pen and a desktop 3D printer based on liberated VOCs. Interestingly, the findings reveal that the 3D pen releases a greater number and amount of VOCs compared to the printer. The amounts of liberated VOCs, as indicated by the corresponding chromatographic peak areas, were found to be 1.4 to 62.6 times higher for the 3D pen compared to the 3D printer when using SPME Arrow.


Subject(s)
Acrylonitrile , Butadienes , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods , Printing, Three-Dimensional , Styrene
3.
Food Chem ; 423: 136247, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37178601

ABSTRACT

A method featuring matrix solid-phase dispersion combined with solid-phase microextraction coupled to gas chromatography-mass spectrometry was developed to determine parabens, musks, antimicrobials, UV filters, and an insect repellent in fish. Optimization and validation of the method was carried out on tilapia and salmon samples. Acceptable linearity (R2 > 0.97), precision (relative standard deviations < 13 %) and accuracy (recovery > 80 %) at two concentration levels for all analytes were obtained using both matrices. The limits of detection ranged from 0.01 to 1.01 µg g-1 (wet weight) for all analytes except for methyl paraben. The SPME Arrow format was applied to increase the sensitivity of the method, and yielded detection limits more than ten times lower than those achieved with traditional SPME. The miniaturized method can be applied to various fish species, regardless of their lipid content, and represents a useful tool for quality control and food safety purposes.


Subject(s)
Cosmetics , Solid Phase Microextraction , Animals , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Limit of Detection , Cosmetics/analysis , Fishes
4.
J Chromatogr A ; 1693: 463886, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36870231

ABSTRACT

Three-dimensional (3D) printers have gained tremendous popularity and are being widely used in offices, laboratories, and private homes. Fused deposition modeling (FDM) is among the most commonly used mechanisms by desktop 3D printers in indoor settings and relies on the extrusion and deposition of heated thermoplastic filaments, resulting in the liberation of volatile organic compounds (VOCs). With the growing use of 3D printers, concerns regarding human health have risen as the exposure to VOCs may cause adverse health effects. Therefore, it is important to monitor VOC liberation during printing and to correlate it to filament composition. In this study, VOCs liberated with a desktop printer were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME fibers featuring sorbent coatings of varied polarity were chosen for the extraction of VOCs liberated from acrylonitrile butadiene styrene (ABS), tough polylactic acid, and copolyester+ (CPE+) filaments. It was found that for all three filaments tested, longer print times resulted in a greater number of extracted VOCs. The ABS filament liberated the most VOCs while the CPE+ filaments liberated the fewest VOCs. Through the use of hierarchical cluster analysis and principal component analysis, filaments as well as fibers could be differentiated based on the liberated VOCs. This study demonstrates that SPME is a promising tool to sample and extract VOCs liberated during 3D printing under non-equilibrium conditions and can be used to aid in tentative identification of the VOCs when coupled to gas chromatography-mass spectrometry.


Subject(s)
Acrylonitrile , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction/methods , Styrene , Printing, Three-Dimensional , Acrylonitrile/analysis
5.
RSC Adv ; 11(55): 34788-34794, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-35494758

ABSTRACT

Metabolic microbiome interaction with the human host has been linked to human physiology and disease development. The elucidation of this interspecies metabolite exchange will lead to identification of beneficial metabolites and disease modulators. Their discovery and quantitative analysis requires the development of specific tools and analysis of specific compound classes. Sulfated metabolites are considered a readout for the co-metabolism of the microbiome and their host. This compound class is part of the human phase II clearance process of xenobiotics and is the main focus in drug or doping metabolism and also includes dietary components and microbiome-derived compounds. Here, we report the targeted analysis of sulfated metabolites in plasma and urine samples in the same individuals to identify the core sulfatome and similarities between these two sample types. This analysis of 27 individuals led to the identification of the core sulfatome of 41 metabolites in plasma and urine samples as well as an age effect for 15 metabolites in both sample types.

SELECTION OF CITATIONS
SEARCH DETAIL
...