Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 352: 141341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307327

ABSTRACT

Granular activated carbon (GAC) has been widely used at the anode of a microbial fuel cell (MFC) to enhance anode performance due to its outstanding capacitance property. To the best of our knowledge, there haven't been any studies on GAC in the cathode for biofilm development and nitrate reduction in MFC. In this study, by adding GAC to biocathode, we investigated the impact of different GAC amounts and stirring speeds on power generation and nitrate reduction rate in MFC. The denitrification rate was found to be nearly two-times higher in MFCs with GAC (0.046 ± 0.0016 kg m-3 d-1) compared to that deprived of GAC (0.024 ± 0.0012 kg m-3 d-1). The electrotrophic denitrification has produced a maximum power density of 37.6 ± 4.8 mW m-2, which was further increased to 79.2 ± 7.4 mW m-2 with the amount of GAC in the biocathode. A comparative study performed with chemical catalyst (Pt carbon with air sparging) cathode and GAC biocathode showed that power densities produced with GAC biocathode were close to that with Pt cathode. Cyclic voltammetry analysis conducted at 10 mV s-1 between -0.9 V and +0.3 V (vs. Ag/AgCl) showed consistent reduction peaks at -0.6V (Ag/AgCl) confirming the reduction reaction in the biocathode. This demonstrates that the GAC biocathode used in this research is effective at producing power density and denitrification in MFC. Our belief that the nitrate reduction was caused by the GAC biocathode in MFC was further strengthened when SEM analysis showing bacterial aggregation and biofilm formation on the surface of GAC. The GAC biocathode system described in this research may be an excellent substitute for MFC's dual functions of current generation and nitrate reduction.


Subject(s)
Bioelectric Energy Sources , Nitrates/chemistry , Charcoal , Denitrification , Organic Chemicals , Electrodes
2.
Sci Total Environ ; 916: 170142, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38242458

ABSTRACT

A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Adsorption , Biocatalysis , Filtration
3.
Biology (Basel) ; 12(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37237489

ABSTRACT

This study investigated the phycoremediation abilities of Chlorella vulgaris (microalga) and Anabaena variabilis (cyanobacterium) for the detoxification of polluted river water. Lab-scale phycoremediation experiments were conducted for 20 days at 30 °C using the microalgal and cyanobacterial strains and water samples collected from the Dhaleswari river in Bangladesh. The physicochemical properties such as electrical conductivity (EC), total dissolved solids (TDS), biological oxygen demand (BOD), hardness ions, and heavy metals of the collected water samples indicated that the river water is highly polluted. The results of the phycoremediation experiments demonstrated that both microalgal and cyanobacterial species significantly reduced the pollutant load and heavy metal concentrations of the river water. The pH of the river water was significantly raised from 6.97 to 8.07 and 8.28 by C. vulgaris and A. variabilis, respectively. A. variabilis demonstrated higher efficacy than C. vulgaris in reducing the EC, TDS, and BOD of the polluted river water and was more effective at reducing the pollutant load of SO42- and Zn. In regard to hardness ions and heavy metal detoxification, C. vulgaris performed better at removing Ca2+, Mg2+, Cr, and Mn. These findings indicate that both microalgae and cyanobacteria have great potential to remove various pollutants, especially heavy metals, from the polluted river water as part of a low-cost, easily controllable, environmentally friendly remediation strategy. Nevertheless, the composition of polluted water should be assessed prior to the designing of microalgae- or cyanobacteria-based remediation technology, since the pollutant removal efficiency is found to be species dependent.

4.
Membranes (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36676862

ABSTRACT

The current study investigated the development and application of lithium (Li)-doped zinc oxide (ZnO)-impregnated polyvinyl alcohol (PVA) proton exchange membrane separator in a single chambered microbial fuel cell (MFC). Physiochemical analysis was performed via FT-IR, XRD, TEM, and AC impedance analysis to characterize thus synthesized Li-doped ZnO. PVA-ZnO-Li with 2.0% Li incorporation showed higher power generation in MFC. Using coulombic efficiency and current density, the impact of oxygen crossing on the membrane cathode assembly (MCA) area was evaluated. Different amounts of Li were incorporated into the membrane to optimize its electrochemical behavior and to increase proton conductivity while reducing biofouling. When acetate wastewater was treated in MFC using a PVA-ZnO-Li-based MCA, the maximum power density of 6.3 W/m3 was achieved. These observations strongly support our hypothesis that PVA-ZnO-Li can be an efficient and affordable separator for MFC.

5.
Front Microbiol ; 13: 868220, 2022.
Article in English | MEDLINE | ID: mdl-35966693

ABSTRACT

In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.

6.
BioTech (Basel) ; 11(3)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35997344

ABSTRACT

Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity.

7.
Chemosphere ; 303(Pt 1): 134902, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35561773

ABSTRACT

This study reports for the first-time the possibility of deploying gas production by thiosulfate utilizing denitrifying bacteria (TUDB) as a proxy to evaluate water toxicity. The test relies on gas production by TUDB due to inhibited metabolic activity in the presence of toxicants. Gas production was measured using a bubble-type respirometer. Optimization studies indicated that 300 mg NO3--N/L, 0.5 mL acclimated culture, and 2100 mg S2O32-/L were the ideal conditions facilitating the necessary volume of gas production for sensitive data generation. Determined EC50 values of the selected heavy metals were: Cr6+, 0.51 mg/L; Ag+, 2.90 mg/L; Cu2+, 2.90 mg/L; Ni2+, 3.60 mg/L; As3+, 4.10 mg/L; Cd2+, 5.56 mg/L; Hg2+, 8.06 mg/L; and Pb2+, 19.3 mg/L. The advantages of this method include operational simplicity through the elimination of cumbersome preprocessing procedures which are used to eliminate interferences caused by turbidity when the toxicity of turbid samples is determined via spectrophotometry.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bacteria , Biological Assay , Environmental Monitoring/methods , Metals, Heavy/analysis , Metals, Heavy/toxicity , Thiosulfates , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Bioresour Technol ; 347: 126579, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34921921

ABSTRACT

Electroactive microorganisms acting as microbial electrocatalysts have intrinsic metabolisms that mediate a redox potential difference between solid electrodes and microbes, leading to spontaneous electron transfer to the electrode (exo-electron transfer) or electron uptake from the electrode (endo-electron transfer). These microbes biochemically convert various organic and/or inorganic compounds to electricity and/or biochemicals in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs). For the past two decades, intense studies have converged to clarify electron transfer mechanisms of electroactive microbes in BESs, which thereby have led to improved bioelectrochemical performance. Also, many novel exoelectrogenic eukaryotes as well as prokaryotes with electroactive properties are being continuously discovered. This review presents an overview of electroactive microorganisms (bacteria, microalgae and fungi) and their exo- and endo-electron transfer mechanisms in BESs for optimizing and advancing bioelectrochemical techniques.


Subject(s)
Bioelectric Energy Sources , Electrons , Electrochemistry , Electrodes , Electron Transport
9.
3 Biotech ; 10(2): 73, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32051806

ABSTRACT

The bacterium Kluyvera georgiana MCC 3673 transfers electrons directly to the electrode for bio-electricity generation in microbial fuel cell (MFC). This could be due to the formation of biofilm on the surface of electrode or with through the extracellular appendages, or both. The role of extracellular appendages pili and flagella in exo-electron transfer mechanism was investigated. The expression level of the genes fli P and pil Q for pili and flagella, respectively, in K. georgiana MCC 3673 was compared in MFC and in shake flask. The transcript analysis was done by qRT-PCR at different times and conditions. The expression level of pil Q transcript in K. georgiana MCC 3673 showed over twofold higher expression during bio-electrogenic process, compared to the one inoculated in shake flask. Similarly, fli P had also showed similar kind of expression in MFC compared to that in shake flask. Higher level of pil Q and fli P transcripts were observed throughout bio-electrogenic process. The level of pil Q was found to be nearly fourfold higher in biofilm-forming cells forming compared to the cells in suspension form. The obtained results suggest that flagella have a role in movement of bacterium towards electrode for donating the electron in absence of oxygen, and pili aiding in adhering on the surface of electrode and forming biofilm. The cumulative effect of fli P and pil Q resulted in exo-electron transfer to the electrode and bio-electricity generation process. The open circuit potential (OCV) of + 0.7 V was produced with the maximum power density of 393 ± 14 mW/m2 in MFC.

10.
Curr Microbiol ; 76(5): 650-657, 2019 May.
Article in English | MEDLINE | ID: mdl-30941539

ABSTRACT

A novel electrogenic bacterial species, Kluyvera georgiana MCC 3673, was isolated by enrichment in microbial fuel cells (MFC) using oilseed cake as a growth substrate. CHNS analyses showed that oilseed cakes are rich in carbon and nitrogen content. Utilization of these compounds by bacteria was evident from 50% reduction in chemical oxygen demand. The maximum power density of 379 ± 8 mW/m2 was produced from sesame seed cake media with mixed consortia inoculum from lake sediment. Enrichment was carried out for over 15 cycles by renewing the media periodically on drop of the voltage. A pure culture of enriched electrogen was isolated by dilution plate technique. Physiological and biochemical studies were performed on the isolate as per standard methods. Genetic analysis by 16S rDNA sequencing revealed that this organism is closely related to Kluyvera georgiana. When inoculated in MFC as pure culture, the maximum power density of 158 ± 11 mW/m2 and 172 ± 13 mW/m2 was produced with sesame and groundnut oilseed cake media, respectively. The performance increased in LB media producing maximum power density of 394 ± 6 mW/m2. This bacterium has also scope for application in wide range of MFC as it can produce electricity even in suspended culture. To our knowledge, this is the first report on bio-electricity generation using oilseed cake as substrate in MFC.


Subject(s)
Bioelectric Energy Sources , Kluyvera/metabolism , Plant Oils/metabolism , Kluyvera/isolation & purification
11.
Enzyme Microb Technol ; 124: 1-8, 2019 May.
Article in English | MEDLINE | ID: mdl-30797474

ABSTRACT

In a microbial fuel cell (MFC) the reduction reaction at cathode has been a limiting factor in achieving maximum power density, and numerous strategies have been implemented in an attempt to overcome this. Herein, we demonstrate that carbon xerogel (CX) doped with iron (Fe) and nitrogen (N) followed by modification with graphene oxide (GO) is an efficient catalyst for MFCs. The CXFeNGO catalyst was characterized using a scanning electron microscope, and X-ray diffraction, and the catalytic activity was confirmed using cyclic voltammetry studies. At the anode, colonization of bacterial cells on the electrode surface, forming a biofilm, was observed. When the CXFeNGO-modified electrode was used at the cathode in the MFC, a maximum power density of 176.5 ± 6 mW m-2 was obtained, compared to that of plain graphite electrode, which produced 139.1 ± 4 mW m-2. The power density of the modified electrode is thus 26.8% higher. The power density further increased to 48.6% when the pH of the catholyte was increased to 12, producing a power density of 207 ± 4 mW m-2.


Subject(s)
Bioelectric Energy Sources , Biofilms/growth & development , Carbon/chemistry , Catalysis , Electrodes/economics , Electrodes/microbiology , Graphite/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nitrogen/chemistry , Oxidation-Reduction , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...