Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 46(5): 1510-5, 2002 May.
Article in English | MEDLINE | ID: mdl-11959589

ABSTRACT

The interactions of artemisinin with atovaquone, quinine, and mefloquine were investigated in three Plasmodium falciparum strains (strains F-32, FCR-3, and K-1) by an in vitro culture assay. The parasites were cultured for 48 h in the presence of different concentrations and proportions of two drugs at a time in a checkerboard design. The response parameters were determined, and the sums of the fractional inhibitory concentrations (sigmaFICs) of the drug combinations were calculated for different degrees of inhibition (50% effective concentration [EC50], EC90, and EC99). Within therapeutically relevant molar ratios (19 to 200), the combination of quinine and artemisinin showed mean sigmaFICs of 1.71 at the EC50, 0.36 at the EC90, and 0.13 at the EC99, indicating increasing synergism. Within the range of molar ratios of 4.3 to 50, the combination of mefloquine and artemisinin yielded mean sigmaFCIs of 0.93, 0.44, and 0.31 at the EC50, EC90, and EC99, respectively, indicating synergism. The atovaquone combination showed additive activity to synergism at atovaquone/artemisinin proportions considered relevant to the in vivo situation, i.e., between 4.3 and 200, with the mean sigmaFICs decreasing from 1.34 at the EC50 to 0.85 and 0.23 at the EC90 and EC99, respectively. Interstrain differences in the degree of drug interaction were seen with the three strains for all combinations. Synergism was most consistent with quinine.


Subject(s)
Antimalarials/pharmacology , Artemisinins , Mefloquine/pharmacology , Naphthoquinones/pharmacology , Plasmodium falciparum/drug effects , Quinine/pharmacology , Sesquiterpenes/pharmacology , Animals , Atovaquone , Drug Synergism , Humans , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/growth & development
2.
Exp Parasitol ; 100(1): 28-35, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11971651

ABSTRACT

In the scenario of drug-resistant Plasmodium falciparum malaria combination therapy represents an effective approach. Artemisinin and its derivatives are of special interest because they represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half-life. Interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine were therefore investigated against three strains of P. falciparum using a 48-h in vitro culture assay. Two of the strains were chloroquine sensitive and one was partially chloroquine resistant. Observed effective concentrations (O) of the combined compounds at different concentration ratios were calculated for different degrees of inhibition (EC50, EC90, EC99) and compared to expected calculated effective concentrations (E) using a probit method. Synergism with mean O/E EC90 values of 0.25 and 0.8 were found with the combination of artemisinin and the two Mannich bases, amodiaquine and pyronaridine, respectively, whereas chloroquine showed addition with a mean value of 1.2. Although both amodiaquine and chloroquine are 4-aminoquinolines, their interaction with artemisinin appears to be different. The combination of artemisinin with amodiaquine represents an important option for the treatment of falciparum malaria.


Subject(s)
Amodiaquine/pharmacology , Antimalarials/pharmacology , Artemisinins , Chloroquine/pharmacology , Naphthyridines/pharmacology , Plasmodium falciparum/drug effects , Sesquiterpenes/pharmacology , Animals , Drug Combinations , Drug Interactions , Drug Resistance , Parasitic Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL