Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(28): 3964-3975, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28288135

ABSTRACT

The acquisition of an invasive phenotype by epithelial cells occurs through a loss of cellular adhesion and polarity, heralding a multistep process that leads to metastatic dissemination. Since its characterization in 1995, epithelial-mesenchymal transition (EMT) has been closely linked to the metastatic process. As a defining aspect of EMT, loss of cell adhesion through downregulation of E-cadherin is carried out by several transcriptional repressors; key among them the SNAI family of transcription factors. Here we identify for the first time that Lyn kinase functions as a key modulator of SNAI family protein localization and stability through control of the Vav-Rac1-PAK1 (Vav-Rac1-p21-activated kinase) pathway. Accordingly, targeting Lyn in vitro reduces EMT and in vivo reduces metastasis of primary tumors. We also demonstrate the clinical relevance of targeting Lyn as a key player controlling EMT; patient samples across many cancers revealed a strong negative correlation between Lyn and E-cadherin, and high Lyn expression in metastatic tumors as well as metastasis-prone primary tumors. This work reveals a novel pancancer mechanism of Lyn-dependent control of EMT and further underscores the role of this kinase in tumor progression.


Subject(s)
Neoplasm Metastasis/prevention & control , RNA, Small Interfering/pharmacology , Snail Family Transcription Factors/metabolism , src-Family Kinases/genetics , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Molecular Targeted Therapy , Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/pathology , Protein Transport/drug effects , Protein Transport/genetics , Xenograft Model Antitumor Assays , src-Family Kinases/antagonists & inhibitors
2.
Oncogenesis ; 3: e115, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25133482

ABSTRACT

Castrate-resistant prostate cancer (CRPC) progression is a complex process by which prostate cells acquire the ability to survive and proliferate in the absence or under very low levels of androgens. Most CRPC tumors continue to express the androgen receptor (AR) as well as androgen-responsive genes owing to reactivation of AR. Protein tyrosine kinases have been implicated in supporting AR activation under castrate conditions. Here we report that Lyn tyrosine kinase expression is upregulated in CRPC human specimens compared with hormone naive or normal tissue. Lyn overexpression enhanced AR transcriptional activity both in vitro and in vivo and accelerated CRPC. Reciprocally, specific targeting of Lyn resulted in a decrease of AR transcriptional activity in vitro and in vivo and prolonged time to castration. Mechanistically, we found that targeting Lyn kinase induces AR dissociation from the molecular chaperone Hsp90, leading to its ubiquitination and proteasomal degradation. This work indicates a novel mechanism of regulation of AR stability and transcriptional activity by Lyn and justifies further investigation of the Lyn tyrosine kinase as a therapeutic target for the treatment of CRPC.Oncogenesis (2014) 3, e115; doi:10.1038/oncsis.2014.30; published online 18 August 2014.

SELECTION OF CITATIONS
SEARCH DETAIL
...