Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 134(1-2): 188-194, 2021.
Article in English | MEDLINE | ID: mdl-34420858

ABSTRACT

Isolated sulfite oxidase deficiency (ISOD) is a rare hereditary metabolic disease caused by absence of functional sulfite oxidase (SO) due to mutations of the SUOX gene. SO oxidizes toxic sulfite and sulfite accumulation is associated with neurological disorders, progressive brain atrophy and early death. Similarities of these neurological symptoms to abundant diseases like neonatal encephalopathy underlines the raising need to increase the awareness for ISOD. Here we report an interdisciplinary approach utilizing exome/genome data derived from gnomAD database as well as published variants to predict the pathogenic outcome of 303 naturally occurring SO missense variants and combining these with activity determination. We identified 15 novel ISOD-causing SO variants and generated a databank of pathogenic SO missense variants to support future diagnosis of ISOD patients. We found six inactive variants (W101G, H118Y, E197K, R217W, S427W, D512Y, Q518R) and seven (D110H, P119S, G121E, G130R, Y140C, R269H, Q396P, R459Q) with severe reduction in activity. Based on the Hardy-Weinberg-equilibrium and the combination of our results with published SO missense and protein truncating variants, we calculated the first comprehensive incidence rate for ISOD of 1 in 1,377,341 births and provide a pathogenicity score to 303 naturally occurring SO missense variants.


Subject(s)
Databases, Genetic , Machine Learning , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/deficiency , Oxidoreductases Acting on Sulfur Group Donors/genetics , Brain/pathology , Gene Frequency , Genetic Variation , Genome , Humans , Infant, Newborn
2.
Plants (Basel) ; 8(3)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30884848

ABSTRACT

Nitrate reductase (NR) is important for higher land plants, as it catalyzes the rate-limiting step in the nitrate assimilation pathway, the two-electron reduction of nitrate to nitrite. Furthermore, it is considered to be a major enzymatic source of the important signaling molecule nitric oxide (NO), that is produced in a one-electron reduction of nitrite. Like many other plants, the model plant Arabidopsis thaliana expresses two isoforms of NR (NIA1 and NIA2). Up to now, only NIA2 has been the focus of detailed biochemical studies, while NIA1 awaits biochemical characterization. In this study, we have expressed and purified functional fragments of NIA1 and subjected them to various biochemical assays for comparison with the corresponding NIA2-fragments. We analyzed the kinetic parameters in multiple steady-state assays using nitrate or nitrite as substrate and measured either substrate consumption (nitrate or nitrite) or product formation (NO). Our results show that NIA1 is the more efficient nitrite reductase while NIA2 exhibits higher nitrate reductase activity, which supports the hypothesis that the isoforms have special functions in the plant. Furthermore, we successfully restored the physiological electron transfer pathway of NR using reduced nicotinamide adenine dinucleotide (NADH) and nitrate or nitrite as substrates by mixing the N-and C-terminal fragments of NR, thus, opening up new possibilities to study NR activity, regulation and structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...