Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Hematol ; 134: 104215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580008

ABSTRACT

Quiescence and differentiation of hematopoietic stem and progenitor cells (HSPC) can be modified by systemic inflammatory cues. Such cues can not only yield short-term changes in HSPCs such as in supporting emergency granulopoiesis but can also promote lasting influences on the HSPC compartment. First, inflammation can be a driver for clonal expansion, promoting clonal hematopoiesis for certain mutant clones, reducing overall clonal diversity, and reshaping the composition of the HSPC pool with significant health consequences. Second, inflammation can generate lasting cell-autonomous changes in HSPCs themselves, leading to changes in the epigenetic state, metabolism, and function of downstream innate immune cells. This concept, termed "trained immunity," suggests that inflammatory stimuli can alter subsequent immune responses leading to improved innate immunity or, conversely, autoimmunity. Both of these concepts have major implications in human health. Here we reviewed current literature about the lasting effects of inflammation on the HSPC compartment and opportunities for future advancement in this fast-developing field.


Subject(s)
Hematopoietic Stem Cells , Inflammation , Humans , Inflammation/pathology , Inflammation/immunology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/cytology , Animals , Immunity, Innate , Epigenesis, Genetic , Cell Differentiation , Hematopoiesis
2.
ACS Omega ; 7(28): 24551-24560, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35874239

ABSTRACT

The use of immunodetection assays including the widely used enzyme-linked immunosorbent assay (ELISA) in applications such as point-of-care detection is often limited by the need for protein immobilization and multiple binding and washing steps. Here, we describe an experimental and analytical framework for the development of simple and modular "mix-and-read" enzymatic complementation assays based on split luciferase that enable sensitive detection and quantification of analytes in solution. In this assay, two engineered protein binders targeting nonoverlapping epitopes on the target analyte were each fused to nonactive fragments of luciferase to create biosensor probes. Binding proteins to two model targets, lysozyme and Sso6904, were isolated from a combinatorial library of Sso7d mutants using yeast surface display. In the presence of the analyte, probes were brought into close proximity, reconstituting enzymatic activity of luciferase and enabling detection of low picomolar concentrations of the analyte by chemiluminescence. Subsequently, we constructed an equilibrium binding model that relates binding affinities of the binding proteins for the target, assay parameters such as the concentrations of probes used, and assay performance (limit of detection and concentration range over which the target can be quantified). Overall, our experimental and analytical framework provides the foundation for the development of split luciferase assays for detection and quantification of various targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...