Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 18(5)2017 May 20.
Article in English | MEDLINE | ID: mdl-28531105

ABSTRACT

We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1), which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.


Subject(s)
Ceramides/biosynthesis , HMGB1 Protein/metabolism , Lung/metabolism , Muscle Fibers, Skeletal/metabolism , Nicotiana/adverse effects , Smoke/adverse effects , Smoking/metabolism , Animals , Cell Respiration , Ceramides/antagonists & inhibitors , Ceramides/genetics , Fatty Acids, Monounsaturated/pharmacology , HMGB1 Protein/blood , HMGB1 Protein/pharmacology , Humans , Insulin/metabolism , Insulin Resistance , Lung/pathology , Macrophages, Alveolar/metabolism , Male , Mice , Mitochondria/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Serine C-Palmitoyltransferase/metabolism
2.
Shock ; 44(6): 585-92, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26529656

ABSTRACT

Lipopolysaccharides (LPS) are prevalent pathogenic molecules that are found within tissues and blood. Elevated circulating LPS is a feature of obesity and sepsis, both of which are associated with mitochondrial abnormalities that are key pathological features of LPS excess. However, the mechanism of LPS-induced mitochondrial alterations remains poorly understood. Herein we demonstrate the necessity of sphingolipid accrual in mediating altered mitochondrial physiology in skeletal muscle following LPS exposure. In particular, we found LPS elicited disparate effects on the sphingolipids dihydroceramides (DhCer) and ceramides (Cer) in both cultured myotubes and in muscle of LPS-injected mice. Although LPS-treated myotubes had reduced DhCer and increased Cer as well as increased mitochondrial respiration, muscle from LPS-injected mice manifested a reverse trend, namely elevated DhCer, but reduced Cer as well as reduced mitochondrial respiration. In addition, we found that LPS treatment caused mitochondrial fission, likely via dynamin-related protein 1, and increased oxidative stress. However, inhibition of de novo sphingolipid biosynthesis via myriocin protected normal mitochondrial function in spite of LPS, but inhibition of DhCer desaturase 1, which increases DhCer, but not Cer, exacerbated mitochondrial respiration with LPS. In an attempt to reconcile the incongruent effects of LPS in isolated muscle cells and whole muscle tissue, we incubated myotubes with conditioned medium from treated macrophages. In contrast to direct myotube LPS treatment, conditioned medium from LPS-treated macrophages reduced myotube respiration, but this was again mitigated with sphingolipid inhibition. Thus, macrophage sphingolipid production appears to be necessary for LPS-induced mitochondrial alterations in skeletal muscle tissue.


Subject(s)
Lipopolysaccharides/chemistry , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Sphingolipids/metabolism , Animals , Cell Respiration , Ceramides/chemistry , Culture Media, Conditioned/chemistry , Lipid Metabolism , Lipids/chemistry , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Oxidative Stress , Oxygen Consumption , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
3.
BMC Cardiovasc Disord ; 14: 165, 2014 Nov 22.
Article in English | MEDLINE | ID: mdl-25416336

ABSTRACT

BACKGROUND: Cigarette smoking is a common and lethal worldwide habit, with considerable mortality stemming from its deleterious effects on heart function. While current theories posit altered blood lipids and fibrinogen metabolism as likely mediators, none have explored the role of the sphingolipid ceramide in exacerbating heart function with smoke exposure. Ceramide production is a consequence of cigarette smoke in the lung, and considering ceramide's harmful effects on mitochondrial function, we sought to elucidate the role of ceramide in mediating smoke-induced altered heart mitochondrial respiration. METHODS: Lung cells (A549) were exposed to cigarette smoke extract (CSE) and heart cells (H9C2) were exposed to the lung-cell conditioned medium. Adult male mice were exposed sidestream cigarette smoke for 8 wk with dietary intervention and ceramide inhibition. Ceramides and heart cell or myocardial mitochondrial respiration were determined. RESULTS: Lung cell cultures revealed a robust response to cigarette smoke extract in both production and secretion of ceramides. Heart cells incubated with lung-cell conditioned medium revealed a pronounced inhibition of myocardial mitochondrial respiration, though this effect was mitigated with ceramide inhibition via myriocin. In vivo, heart ceramides increased roughly 600% in adult mice with long-term sidestream cigarette smoke exposure. This resulted in a significant ceramide-dependent reduction in left myocardial mitochondrial respiration, as heart mitochondria from the mice exposed to both smoke and myriocin injections respired normally. CONCLUSIONS: These results suggest ceramide to be an important mediator of altered myocardial mitochondrial function with cigarette smoke exposure. Thus, anti-ceramide therapies might be considered in the future to protect heart mitochondrial function with smoke exposure.


Subject(s)
Ceramides/metabolism , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Smoke/adverse effects , Smoking/adverse effects , Animals , Cell Line, Tumor , Cell Respiration/drug effects , Ceramides/antagonists & inhibitors , Culture Media, Conditioned/metabolism , Fatty Acids, Monounsaturated/pharmacology , Humans , Inhalation Exposure/adverse effects , Lung/drug effects , Lung/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Up-Regulation
4.
Am J Physiol Endocrinol Metab ; 307(10): E919-27, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25269485

ABSTRACT

Cigarette smoke exposure increases lung ceramide biosynthesis and alters metabolic function. We hypothesized that ceramides are released from the lung during cigarette smoke exposure and result in elevated skeletal muscle ceramide levels, resulting in insulin resistance and altered mitochondrial respiration. Employing cell and animal models, we explored the effect of cigarette smoke on muscle cell insulin signaling and mitochondrial respiration. Muscle cells were treated with conditioned medium from cigarette smoke extract (CSE)-exposed lung cells, followed by analysis of ceramides and assessment of insulin signaling and mitochondrial function. Mice were exposed to daily cigarette smoke and a high-fat, high-sugar (HFHS) diet with myriocin injections to inhibit ceramide synthesis. Comparisons were conducted between these mice and control animals on standard diets in the absence of smoke exposure and myriocin injections. Muscle cells treated with CSE-exposed conditioned medium were completely unresponsive to insulin stimulation, and mitochondrial respiration was severely blunted. These effects were mitigated when lung cells were treated with the ceramide inhibitor myriocin prior to and during CSE exposure. In mice, daily cigarette smoke exposure and HFHS diet resulted in insulin resistance, which correlated with elevated ceramides. Although myriocin injection was protective against insulin resistance with either smoke or HFHS, it was insufficient to prevent insulin resistance with combined CS and HFHS. However, myriocin injection restored muscle mitochondrial respiration in all treatments. Ceramide inhibition prevents metabolic disruption in muscle cells with smoke exposure and may explain whole body insulin resistance and mitochondrial dysfunction in vivo.


Subject(s)
Ceramides/metabolism , Insulin Resistance , Insulin/metabolism , Lung/metabolism , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Nicotiana/toxicity , Smoke/adverse effects , Animals , Carbohydrates , Cell Respiration , Diet, High-Fat , Fatty Acids, Monounsaturated/pharmacology , Mice , Signal Transduction
5.
Diabetol Metab Syndr ; 4(1): 45, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23134616

ABSTRACT

BACKGROUND: The worldwide prevalence of obesity has lead to increased efforts to find therapies to treat obesity-related pathologies. Ceramide is a well-established mediator of several health problems that arise from adipose tissue expansion. The purpose of this study was to determine whether AICAR, an AMPK-activating drug, selectively reduces skeletal muscle ceramide synthesis. METHODS: Murine myotubes and rats were challenged with palmitate and high-fat diet, respectively, to induce ceramide accrual, in the absence or presence of AICAR. Transcript levels of the rate-limiting enzyme in ceramide biosynthesis, serine palmitoyltransferase 2 (SPT2) were measured, in addition to lipid analysis. Student's t-test and ANOVA were used to assess the association between outcomes and groups. RESULTS: Palmitate alone induced an increase in serine palmitoyltransferase 2 (SPT2) expression and an elevation of ceramide levels in myotubes. Co-incubation with palmitate and AICAR prevented both effects. However, ceramide and SPT2 increased with the addition of compound C, an AMPK inhibitor. In rats fed a high-fat diet (HFD), soleus SPT2 expression increased compared with normal chow-fed littermates. Moreover, rats on HFD that received daily AICAR injections had lower SPT2 levels and reduced muscle ceramide content compared with those on HFD only. CONCLUSIONS: These results suggest that AICAR reduces ceramide synthesis by targeting SPT2 transcription, likely via AMPK activation as AMPK inhibition prevented the AICAR-induced improvements. Given the role of skeletal muscle ceramide in insulin resistance, it is tempting to speculate that interventions that activate AMPK may lead to long-term ceramide reduction and improved metabolic function.

SELECTION OF CITATIONS
SEARCH DETAIL
...