Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 19020, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31836730

ABSTRACT

Undulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200-300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator.

2.
Phys Rev Lett ; 121(7): 074802, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169048

ABSTRACT

The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broadband electron beams can be converted to quasimonoenergetic beams of ≤10% energy spread while maintaining a high charge of more than 120 pC. In the linear and quasilinear regimes of wakefield acceleration, the method could provide even lower, subpercent level, energy spread.

3.
Phys Rev Lett ; 120(25): 254802, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29979083

ABSTRACT

Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultrashort, compact, and spatially coherent x-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron sources is limited by a low energy efficiency and a photon energy in the 10 s of kiloelectronvolt range, which for example prohibits the use of these sources for probing dense matter. Here, based on three-dimensional particle-in-cell simulations, we propose an original hybrid scheme that combines a low-density laser-driven plasma accelerator with a high-density beam-driven plasma radiator, thereby considerably increasing the photon energy and the radiated energy of the betatron source. The energy efficiency is also greatly improved, with about 1% of the laser energy transferred to the radiation, and the γ-ray photon energy exceeds the megaelectronvolt range when using a 15 J laser pulse. This high-brilliance hybrid betatron source opens the way to a wide range of applications requiring MeV photons, such as the production of medical isotopes with photonuclear reactions, radiography of dense objects in the defense or industrial domains, and imaging in nuclear physics.

4.
Nat Commun ; 9(1): 1814, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720590

ABSTRACT

The original version of this Article contained an error in the last sentence of the first paragraph of the Introduction and incorrectly read 'A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime in equation 11, nx(n-ß) x ß: n the two times and beta the two times should be bold since they are vectorsin Eq. 12, ß should be bold as well.' The correct version is 'A proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime.'This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 1334, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29626187

ABSTRACT

With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality.

6.
Sci Rep ; 7(1): 10203, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860579

ABSTRACT

The achievable energy and the stability of accelerated electron beams have been the most critical issues in laser wakefield acceleration. As laser propagation, plasma wave formation and electron acceleration are highly nonlinear processes, the laser wakefield acceleration (LWFA) is extremely sensitive to initial experimental conditions. We propose a simple and elegant waveform control method for the LWFA process to enhance the performance of a laser electron accelerator by applying a fully optical and programmable technique to control the chirp of PW laser pulses. We found sensitive dependence of energy and stability of electron beams on the spectral phase of laser pulses and obtained stable 2-GeV electron beams from a 1-cm gas cell of helium. The waveform control technique for LWFA would prompt practical applications of centimeter-scale GeV-electron accelerators to a compact radiation sources in the x-ray and γ-ray regions.

7.
Rev Sci Instrum ; 87(7): 073505, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27475557

ABSTRACT

Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

8.
Rev Sci Instrum ; 87(5): 053306, 2016 05.
Article in English | MEDLINE | ID: mdl-27250413

ABSTRACT

This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d'Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

9.
Sci Rep ; 5: 16310, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26549584

ABSTRACT

Ionization injection is a simple and efficient method to trap an electron beam in a laser plasma accelerator. Yet, because of a long injection length, this injection technique leads generally to the production of large energy spread electron beams. Here, we propose to use a shock front transition to localize the injection. Experimental results show that the energy spread can be reduced down to 10 MeV and that the beam energy can be tuned by varying the position of the shock. This simple technique leads to very stable and reliable injection even for modest laser energy. It should therefore become a unique tool for the development of laser-plasma accelerators.

10.
Phys Rev Lett ; 115(15): 155002, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26550730

ABSTRACT

An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.

11.
Nat Commun ; 6: 6860, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25880791

ABSTRACT

Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.

12.
Nat Commun ; 5: 4736, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25145401

ABSTRACT

The capability of plasmas to sustain ultrahigh electric fields has attracted considerable interest over the last decades and has given rise to laser-plasma engineering. Today, plasmas are commonly used for accelerating and collimating relativistic electrons, or to manipulate intense laser pulses. Here we propose an ultracompact plasma undulator that combines plasma technology and nanoengineering. When coupled with a laser-plasma accelerator, this undulator constitutes a millimetre-sized synchrotron radiation source of X-rays. The undulator consists of an array of nanowires, which are ionized by the laser pulse exiting from the accelerator. The strong charge-separation field, arising around the wires, efficiently wiggles the laser-accelerated electrons. We demonstrate that this system can produce bright, collimated and tunable beams of photons with 10-100 keV energies. This concept opens a path towards a new generation of compact synchrotron sources based on nanostructured plasmas.

13.
Phys Rev Lett ; 111(21): 219501, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313534
14.
Phys Rev Lett ; 111(13): 135002, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24116787

ABSTRACT

The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for nonplanar electron trajectories. Whereas the emittance of electron beams produced in a laser-plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in a laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular-momentum growth and we present experimental results showing that the angular-momentum content evolves during the acceleration.

15.
Phys Rev Lett ; 111(8): 085005, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010450

ABSTRACT

Laser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17 mm·mrad) and a low energy spread (2%), while retaining a high charge (~100 pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities.

16.
Nat Commun ; 4: 1501, 2013.
Article in English | MEDLINE | ID: mdl-23422669

ABSTRACT

Laser-plasma accelerators can produce high-quality electron beams, up to giga electronvolts in energy, from a centimetre scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor-quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher-quality electron beams.

17.
Phys Rev Lett ; 108(7): 075004, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401218

ABSTRACT

Experimental measurements of backward accelerated protons are presented. The beam is produced when an ultrashort (5 fs) laser pulse, delivered by a kHz laser system, with a high temporal contrast (10(8)), interacts with a thick solid target. Under these conditions, proton cutoff energy dependence with laser parameters, such as pulse energy, polarization (from p to s), and pulse duration (from 5 to 500 fs), is studied. Theoretical model and two-dimensional particle-in-cell simulations, in good agreement with a large set of experimental results, indicate that proton acceleration is directly driven by Brunel electrons, in contrast to conventional target normal sheath acceleration that relies on electron thermal pressure.

18.
Phys Rev Lett ; 107(21): 215004, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22181891

ABSTRACT

The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 016408, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866748

ABSTRACT

The expansion of a plasma slab into a vacuum is studied using one-dimensional and two-dimensional particle-in-cell simulations. As electrons transfer their longitudinal kinetic energy to ions during the expansion, the electron temperature becomes anisotropic. Once this anisotropy exceeds a threshold value, it drives the Weibel instability, leading to magnetic fields in the megagauss range. These fields induce energy transfer between the longitudinal and transverses directions, which influences the expansion. The impact of a cold electron population on this phenomenon is also investigated.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026408, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866927

ABSTRACT

The development of the Weibel instability during the expansion of a thin plasma foil heated by an intense laser pulse is investigated, using both analytical models and relativistic particle-in-cell simulations. When the plasma has initially an anisotropic electron distribution, this electromagnetic instability develops from the beginning of the expansion. Then it contributes to suppress the anisotropy and eventually saturates. After the saturation, the strength of the magnetic field decreases because of the plasma expansion until it becomes too weak to maintain the distribution isotropic. For this time, the anisotropy rises as electrons give progressively their longitudinal energy to ions, so that a new instability can develop.

SELECTION OF CITATIONS
SEARCH DETAIL
...